题目内容

【题目】如图,在ABC中,AB=AC,D是BA延长线上的一点,点E是AC的中点。

(1)实践与操作:利用尺规按下列要求作图,并在图中标明相应字母(保留作图痕迹,不写作法)。

DAC的平分线AM。连接BE并延长交AM于点F。

(2)猜想与证明:试猜想AF与BC有怎样的位置关系和数量关系,并说明理由。

【答案】解:(1)作图如下:

(2)AFBC且AF=BC理由如下:

AB=AC,∴∠ABC=C。∴∠DAC=ABC+C=2C。

由作图可知:DAC=2FAC,

∴∠C=FAC。AFBC。

E是AC的中点,AE=CE。

∵∠AEF=CEB ,∴△AEF≌△CEB (ASA)。AF=BC。

【解析】

试题(1)根据题意画出图形即可。

(2)首先根据等腰三角形的性质与三角形外角的性质证明C=FAC,进而可得AFBC;然后再证明AEF≌△CEB,即可得到AF=BC

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网