题目内容
45°
45°
.分析:根据正方形的每一个角都是直角可得∠BCD=90°,再根据旋转的性质求出∠ECF=∠BCD=90°,CE=CF,然后求出△CEF是等腰直角三角形,然后根据等腰直角三角形的性质解答.
解答:解:∵四边形ABCD是正方形,
∴∠BCD=90°,
∵△BEC绕点C旋转至△DFC的位置,
∴∠ECF=∠BCD=90°,CE=CF,
∴△CEF是等腰直角三角形,
∴∠EFC=45°.
故答案为:45°.
∴∠BCD=90°,
∵△BEC绕点C旋转至△DFC的位置,
∴∠ECF=∠BCD=90°,CE=CF,
∴△CEF是等腰直角三角形,
∴∠EFC=45°.
故答案为:45°.
点评:本题考查了旋转的性质,正方形的性质,等腰直角三角形的判定与性质,熟记旋转变换只改变图形的位置不改变图形的形状与大小,然后判断出△CEF是等腰直角三角形是解题的关键.
练习册系列答案
相关题目