题目内容

如图,AB是⊙O的直径,点C在⊙O上,∠CAB的平分线交⊙O于点D,过点D作AC的垂线交AC的延长线于点E,连接BC交AD于点F.
(1)猜想ED与⊙O的位置关系,并证明你的猜想;
(2)若AB=6,AD=5,求AF的长.
(1)ED与⊙O的位置关系是相切.理由如下:
连接OD,
∵∠CAB的平分线交⊙O于点D,
CD
=
BD

∴OD⊥BC,
∵AB是⊙O的直径,
∴∠ACB=90°,
即BC⊥AC,
∵DE⊥AC,
∴DEBC,
∴OD⊥DE,
∴ED与⊙O的位置关系是相切;

(2)连接BD.
∵AB是直径,
∴∠ADB=90°,
在直角△ABD中,BD=
AB2-AD2
=
36-25
=
11

∵AB为直径,
∴∠ACB=∠ADB=90°,
又∵∠AFC=∠BFD,
∴∠FBD=∠CAD=∠BAD
∴△FBD△BAD,
FD
BD
=
BD
AD

∴FD=
11
5

∴AF=AD-FD=5-
11
5
=
14
5

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网