题目内容
【题目】如图,在平面直角坐标系xOy中,以点O为圆心的圆分别交x轴的正半轴于点M,交y轴的正半轴于点N.劣弧的长为,直线与x轴、y轴分别交于点A、B.
(1)求证:直线AB与⊙O相切;
(2)求图中所示的阴影部分的面积(结果用π表示)
【答案】(1)证明见解析;(2).
【解析】
试题分析:(1)作OD⊥AB于D,由弧长公式和已知条件求出半径OM=,由直线解析式求出点A和B的坐标,得出OA=3,OB=4,由勾股定理求出AB=5,再由△AOB面积的计算方法求出OD,即可得出结论;
(2)阴影部分的面积=△AOB的面积﹣扇形OMN的面积,即可得出结果.
试题解析:(1)证明:作OD⊥AB于D,如图所示:
∵劣弧的长为,∴=,解得:OM=,即⊙O的半径为,∵直线与x轴、y轴分别交于点A、B,当y=0时,x=3;当x=0时,y=4,∴A(3,0),B(0,4),∴OA=3,OB=4,∴AB==5,∵△AOB的面积=ABOD=OAOB,∴OD===半径OM,∴直线AB与⊙O相切;
(2)解:图中所示的阴影部分的面积=△AOB的面积﹣扇形OMN的面积==.
【题目】某厂生产A,B两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了单价变化不完整的统计表及折线图.
A,B产品单价变化统计表
第一次 | 第二次 | 第三次 | |
A产品单价(元/件) | 6 | 5.2 | 6.5 |
B产品单价(元/件) | 3.5 | 4 | 3 |
并求得了A产品三次单价的平均数和方差:
=5.9,SA2= [(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]=
(1)在折线图中画出B产品的单价变化的情况;
(2)求B产品三次单价的方差;
(3)该厂决定第四次调价,A产品的单价仍为6.5元/件,B产品的单价比3元/件的基础上调m%(m>0),但调价后不能超过4元/件,并且使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1,求m的值.
【题目】为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x名学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如下统计图表:
学生最喜爱的节目人数统计表
节目 | 人数(名) | 百分比 |
最强大脑 | 5 | 10% |
朗读者 | 15 | b% |
中国诗词大会 | a | 40% |
出彩中国人 | 10 | 20% |
根据以上提供的信息,解答下列问题:
(1)x= , a= , b=;
(2)补全上面的条形统计图;
(3)若该校共有学生1000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.