题目内容
解方程:
分解因式:ab2-4ab+4a=__________________.
如图,在矩形ABCD中,P是AD上一动点,O为BD的中点,连接PO并延长,交BC于点Q.
(1) 求证:四边形PBQD是平行四边形
(2) 若AD=6cm,AB=4cm, 点P从点A出发,以1cm/s的速度向点D运动(不与点D重合),设点P运动时间为t s , 请用含t的代数式表示PD的长,并求出当t为何值时,四边形PBQD是菱形。并求出此时菱形的周长。
不等式组解集在数轴上表示正确的是( )
A. B. C. D.
如图,是⊙的直径,弦 于点,过点的切线交的延长线于点,连接DF.
(1)求证:DF是⊙的切线;
(2)连接,若=30°,,求的长.
为了测量校园水平地面上一棵不可攀爬的树的高度,小文同学做了如下的探索:根据物理学中光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子放在合适的位置,刚好能在镜子里看到树梢顶点,此时小文与平面镜的水平距离为2.0米,树的底部与平面镜的水平距离为8.0米,若小文的眼睛与地面的距离为1.6米,则树的高度约为______米(注:反射角等于入射角).
某校九年级(1)班在“迎中考百日誓师”活动中打算制做一个带有正方体挂坠的倒计时牌挂在班级,正方体的每个面上分别书写“成功舍我其谁”六个字.如图是该班同学设计的正方体挂坠的平面展开图,那么“我”字对面的字是( )
A. 舍 B. 我 C. 其 D. 谁
若,则用x的代数式表示y为________.
如图,A(-1,0),C(1,4)点B在x轴上,且AB=3.
(1)求点B的坐标,并画出△ABC;(2)求△ABC的面积.