题目内容
【题目】如图,ABCD中,AE平分∠BAD交BC边于E,EF⊥AE交CD边于F,延长BA到点G,使AG=CF,连接GF,若BC=7,DF=3,AE=,则GF的长为__________
【答案】3.
【解析】
首先延长AE、DC相交于点M,过点A作AH⊥BC于点H,连接AC,进而得出FC的长,再利用勾股定理得出EH的长,即可得出FG的长
延长AE、DC相交于点M,过点A作AH⊥BC于点H,连接AC,
∵AB∥DM,
∴∠M=∠BAE,∠CEM=∠DAM,
而∠BAE=∠DAM,
∴∠M=∠CEM=∠DAM,
∴CE=CM,DM=AD=7,
∵∠M+∠MFE=90°=∠CEM+∠CEF,
∴∠MFE=∠CEF,
∴CF=CE=CM=FM=(MD-DF)=2,
∴AB=DC=DF+CF=5,BE=BC-CE=5,
设EH=x,可得:BH=5-x,
∵AH2=AE2-EH2=AB2-BE2,
∴10-x2=25-(5-x)2
解得:x=1,
则EH=1,AH=3,
故CH=CE+EH=3,
则AC==3,
而四边形ACFG是平行四边形,
故FG=AC=3.
故答案为:3.
【题目】如图,设 A 是由n×n 个有理数组成的n 行n 列的数表, 其中aij ( i,j =1,2,3,,n )表示位于第i 行第 j 列的数,且aij 取值为 1 或-1.
a | a | a | |
a | a | a | |
a | a | a |
对于数表 A 给出如下定义:记 xi 为数表 A 的第i 行各数之积,y j 为数表 A 的第 j 列各数之积.令S = (x1+ x2++ x)+(y1+ y2+ y),将S 称为数表 A 的“积和”.
(1)当n = 4 时,对如下数表 A,求该数表的“积和” S 的值;
1 | 1 | -1 | -1 |
1 | -1 | 1 | 1 |
1 | -1 | -1 | 1 |
-1 | -1 | 1 | 1 |
(2)是否存在一个 3×3 的数表 A,使得该数表的“积和” S =0 ?并说明理由;
(3)当n =10 时,直接写出数表 A 的“积和” S 的所有可能的取值.