题目内容
【题目】将一矩形纸片OABC放在平面直角坐标系中,O(0,0),A(6,0),C(0,3).动点Q从点O出发以每秒1个单位长的速度沿OC向终点C运动,运动秒时,动点P从点A出发以相等的速度沿AO向终点O运动.当其中一点到达终点时,另一点也停止运动.设点P的运动时间为t(秒).
(1)求点B的坐标,并用含t的代数式表示OP,OQ;
(2)当t=1时,如图1,将△OPQ沿PQ翻折,点O恰好落在CB边上的点D处,求点D的坐标;
(3)在(2)的条件下,矩形对角线AC,BO交于M,取OM中点G,BM中点H,求证当t=1时四边形DGPH是平行四边形.
【答案】(1)B(6,3);OP=6-t;OQ=+t;(2)D(1,3);(3)证明过程见解析
【解析】
试题分析:(1)根据矩形的性质求出点B的坐标,根据动点问题求出OP和OQ的长度;(2)根据折叠图形的性质求出OQ和DQ的长度,然后根据勾股定理求出CD的长度,得到点D的坐标;(3)根据一组对边平行且相等的四边形为平行四边形进行判定.
试题解析:(1)B(6,3);OP=OA-AP=6-t, OQ=+t.
(2)当t=1时,OP=5,OQ=,则CQ=3-=,
由折叠可知:△OPQ≌△DPQ,
∴OQ=DQ=
由勾股定理,得:CD=1
∴D(1,3)
(3)∵四边形OABC是矩形,
∴OA=BC,
又∵CD=AP=1,
∴BC-CD=OA-AP,即BD=OP,
∵OM=MB,G为OM中点,H为BM中点 ,
∴OG=BH,
∵OA∥BC
∴∠1=∠2
在△POG和△DBH中,OG=BH,∠1=∠2,OP=DB
∴△POG≌△DBH
∴∠OGP=∠BHD,PG=DH
∴∠MGP=∠DHM
∴PG∥DH
又∵PG=DH
∴四边形DGPH是平行四边形.
练习册系列答案
相关题目