题目内容
【题目】河流两岸a、b互相平行,C、D是河岸a上间隔50m的两个电线杆.某人在河岸b上的A处测得∠DAB=30°,然后沿河岸走了100m到达B处,测得∠CBF=60°,求河流的宽度CF的值(结果精确到个位).
【答案】43
【解析】试题分析:本题可将已知的条件构建到直角三角形中进行计算,过点C作CE∥AD,交AB于E,那么∠CEF=∠DAB=30°且AE=CD=50,根据观察发现,
∠CBF=∠CEB+∠ECB=60°,而∠CEB=30°,那么∠ECB=∠CEB,那么CB=BE,直角三角形CBF中,有了CB的长,有锐角的度数,CF的值便可求出来了.
试题解析:
作CG∥AD,∠CGB=∠BCG= 300
则BC=BG=50,BF=25,CF=≈43米
练习册系列答案
相关题目