题目内容
阅读下列材料:
为了求1+2+22+23+…+22011的值,可令S=1+2+22+23+…+22011①,
则 2S=2+22+23+…+22012②,
②-①得 2S-S=22012-1,即S=22012-1,
∴1+2+22+23+…+22011=22012-1
仿照以上推理,请计算:1+4+42+43…+42011.
为了求1+2+22+23+…+22011的值,可令S=1+2+22+23+…+22011①,
则 2S=2+22+23+…+22012②,
②-①得 2S-S=22012-1,即S=22012-1,
∴1+2+22+23+…+22011=22012-1
仿照以上推理,请计算:1+4+42+43…+42011.
分析:把所求算式乘以4,然后相减并整理即可得解.
解答:解:设S=1+4+42+43…+42011①,
则4S=4+42+43…+42012②,
②-①得,3S=42012-1,
所以,S=
.
则4S=4+42+43…+42012②,
②-①得,3S=42012-1,
所以,S=
42012-1 |
3 |
点评:本题考查了有理数的乘方,读懂题目信息,理解这列数求和的计算方法是解题的关键.
练习册系列答案
相关题目
先阅读下列材料,再解答后面的问题.
材料:密码学是一门很神秘、很有趣的学问,在密码学中,直接可以看到的信息称为明码,加密后的信息称为密码,任何密码只要找到了明码与密码的对应关系--密钥,就可以破译它.
密码学与数学是有关系的.为此,八年一班数学兴趣小组经过研究实验,用所学的一次函数知识制作了一种密钥的编制程序.他们首先设计了一个“字母--明码对照表”:
例如,以y=3x+13为密钥,将“自信”二字进行加密转换后得到下表:
因此,“自”字加密转换后的结果是“9140”.
问题:
(1)请你求出当密钥为y=3x+13时,“信”字经加密转换后的结果;
(2)为了提高密码的保密程度,需要频繁地更换密钥.若“自信”二字用新的密钥加密转换后得到下表:
请求出这个新的密钥,并直接写出“信”字用新的密钥加密转换后的结果.
材料:密码学是一门很神秘、很有趣的学问,在密码学中,直接可以看到的信息称为明码,加密后的信息称为密码,任何密码只要找到了明码与密码的对应关系--密钥,就可以破译它.
密码学与数学是有关系的.为此,八年一班数学兴趣小组经过研究实验,用所学的一次函数知识制作了一种密钥的编制程序.他们首先设计了一个“字母--明码对照表”:
字母 | A | B | C | D | E | F | G | H | I | J | K | L | M |
明码 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
字母 | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
明码 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 13 | 24 | 25 | 26 |
汉字 | 自 | 信 | |||
拼音 | Z | I | X | I | N |
明码:x | 26 | 9 | 24 | 9 | 14 |
密钥:y= | |||||
密码:y | 91 | 40 |
问题:
(1)请你求出当密钥为y=3x+13时,“信”字经加密转换后的结果;
(2)为了提高密码的保密程度,需要频繁地更换密钥.若“自信”二字用新的密钥加密转换后得到下表:
汉字 | 自 | 信 | |||
拼音 | Z | I | X | I | N |
明码:x | 26 | 9 | 24 | 9 | 14 |
密钥:y= | |||||
密码:y | 70 | 36 |