题目内容
【题目】已知∠MAN=120°,AC平分∠MAN,点B、D分别在AN、AM上.
(1)如图1,若∠ABC=∠ADC=90°,请你探索线段AD、AB、AC之间的数量关系,并证明之;
(2)如图2,若∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,给出证明;若不成立,请说明理由.
【答案】(1)AD+AB=AC;(2)仍成立.
【解析】
(1)得到∠ACD=∠ACB=30°后再可以证得AD=ABAC从而,证得结论;
(2)过点C分别作AM、AN的垂线,垂足分别为E、F,证得△CED≌△CFB后即可得到AD+AB=AE﹣ED+AF+FB=AE+AF,从而证得结论.
(1)关系是:AD+AB=AC.证明如下:
∵AC平分∠MAN,∠MAN=120°,∴∠CAD=∠CAB=60°.
又∵∠ADC=∠ABC=90°,∴∠ACD=∠ACB=30°,则AD=ABAC(直角三角形一锐角为30°,则它所对直角边为斜边一半),∴AD+AB=AC.
(2)仍成立.理由如下:
过点C分别作AM、AN的垂线,垂足分别为E、F.
∵AC平分∠MAN,∴CE=CF(角平分线上点到角两边距离相等).
∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°,∴∠CDE=∠ABC.
又∵∠CED=∠CFB=90°,∴△CED≌△CFB(AAS).
∵ED=FB,∴AD+AB=AE﹣ED+AF+FB=AE+AF.
由(1)知AE+AF=AC,∴AD+AB=AC.
练习册系列答案
相关题目