题目内容
已知如图,∠1=∠2,∠B=∠C, 求证:∠A=∠D.
如图所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.
(1)求证:△ACE≌△BCD;
(2)若AD=5,BD=12,求DE的长.
已知在四边形中,
(1) (用含、的代数式直接填空);
(2)如图1,若 平分,平分,请写出与的位置关系,并说明理由;
(3)如图2,为四边形的不相邻的外角平分线所在直线构成的锐角.
①若, 20°,试求、.
②小明在作图时,发现不一定存在,请直接指出、满足什么条件时,不存在.
将“平行于同一条直线的两条直线平行”改写成“如果……那么……”的形式为 .
已知,在平面直角坐标系中,AB⊥x轴于点B,点A(a,b)满足,平移线段AB使点A与原点重合,点B的对应点为点C.
(1)则a= ,b= ;点C坐标为 ;
(2)如图1,点D(m,n)在线段BC上,求m、n满足的关系式;
(3)如图2,E是线段OB上一动点,以OB为边作∠BOG=∠AOB,交BC于点G,连CE交OG于点F,当点E在线段OB上运动过程中,的值是否会发生变化?若变化请说明理由,若不变,请求出其值.
某公司董事会拨出总额为40万元的款项作为奖励金,全部用于奖励本年度作出突出贡献的一、二、三等奖的职工.原来设定:一等奖每人5万元,二等奖每人3万元,三等奖每人2万元;后考虑到一等奖的职工科技创新已给公司带来巨大的经济效益,现在改为:一等奖每人15万元,二等奖每人4万元,三等奖每人1万元,那么该公司本年度获得一、二、三等奖的职工共________ 人.
某种出租车的收费标准:起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( )
A. 5千米 B. 7千米 C. 8千米 D. 15千米
先化简,再求值:
,其中
如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD交圆的切线BE于点E
(1)证明:直线PD是⊙O的切线.
(2)如果∠BED=60°,,求PA的长.
(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.