题目内容
【题目】若关于 x 的一元二次方程 x2﹣(k+3)x+2k+2=0 有一根小于 1,一根大于1,则 k 的取值范围是______.
【答案】k<0
【解析】
利用分解因式法解一元二次方程,可得出x1=2、x2=k+1,根据方程有一根小于1,一根大于1,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.
∵x2-(k+3)x+2k+2=(x-2)(x-k-1)=0,
∴x1=2,x2=k+1.
∵方程有一根小于1,一根大于1,
∴k+1<1,解得:k<0,
∴k的取值范围为k<0,
故答案为:k<0.
练习册系列答案
相关题目