题目内容
在矩形ABCD中,AB=4,AD=5,P是射线BC上的一个动点,作PE⊥AP,PE交射线DC于点E,射线AE交射线BC于点F,设BP=x,CE=y.(1)如图,当点P在边BC上时(点P与点B、C都不重合),求y关于x的函数解析式,并写
![精英家教网](http://thumb.zyjl.cn/pic3/upload/images/201201/81/dabb1273.png)
(2)当x=3时,求CF的长;
(3)当tan∠PAE=
1 | 2 |
分析:(1)PC在BC上运动时,要求y关于x的函数解析式,只需要用勾股定理表示PE2=PC2+EC2就可以使问题到解决,而关键是解决PE2,又在Rt△APE中由勾股定理求得,从而解决问题.
(2)把x=3的值代入第一问的解析式就可以求出CE的值,再利用三角形相似就可以求出CF的值.
(3)由条件可以证明△ABP∽△PCE,可以得到
=
=2,再分情况讨论,从而求出BP的值.
(2)把x=3的值代入第一问的解析式就可以求出CE的值,再利用三角形相似就可以求出CF的值.
(3)由条件可以证明△ABP∽△PCE,可以得到
BP |
CE |
AB |
PC |
解答:
解:(1)∵四边形ABCD是矩形,
∴AB=CD=4,BC=AD=5,∠B=∠BCD=∠D=90°,
∵BP=x,CE=y,
∴PC=5-x,DE=4-y,
∵AP⊥PE,
∴∠APE=90°,∠1+∠2=90°,
∵∠1+∠3=90°,
∴∠2=∠3,
∴△ABP∽△PCE,
∴
=
,
∴
=
,
∴y=
,
自变量的取值范围为:0<x<5;
(2)当x=3时,y=
,
=
,即CE=
,
∴DE=
,
∵四边形ABCD是矩形,
∴AD平行于BF.
∴△AED∽△FEC,
∴
=
,
∴
=
,
∴CF=3;
(3)根据tan∠PAE=
,可得:
=2
易得:△ABP∽△PCE
∴
=
=2
于是:
=
=2 ①或
=
=2 ②
解得:x=3,y=1.5或 x=7,y=3.5.
∴BP=3或7.
![精英家教网](http://thumb.zyjl.cn/pic3/upload/images/201201/81/a51fabf1.png)
∴AB=CD=4,BC=AD=5,∠B=∠BCD=∠D=90°,
∵BP=x,CE=y,
∴PC=5-x,DE=4-y,
∵AP⊥PE,
∴∠APE=90°,∠1+∠2=90°,
∵∠1+∠3=90°,
∴∠2=∠3,
∴△ABP∽△PCE,
∴
CE |
BP |
PC |
AB |
∴
y |
x |
5-x |
4 |
∴y=
-x2+ 5x |
4 |
自变量的取值范围为:0<x<5;
![精英家教网](http://thumb.zyjl.cn/pic3/upload/images/201203/41/e0d4413b.png)
-32+5×3 |
4 |
=
3 |
2 |
3 |
2 |
∴DE=
5 |
2 |
∵四边形ABCD是矩形,
∴AD平行于BF.
∴△AED∽△FEC,
∴
AD |
CF |
DE |
CE |
∴
5 |
CF |
| ||
|
∴CF=3;
(3)根据tan∠PAE=
1 |
2 |
AP |
PE |
易得:△ABP∽△PCE
∴
BP |
CE |
AB |
PC |
于是:
x |
y |
4 |
5-x |
x |
y |
4 |
x-5 |
解得:x=3,y=1.5或 x=7,y=3.5.
∴BP=3或7.
点评:本题考查了相似三角形的判定与性质,矩形的性质,解直角三角形以及勾股定理的运用.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目