题目内容
【题目】沙坪坝区2017年已经成功创建国家卫生城区,现在正全力争创全国文明城区(简称“创文”),某街道积极响应“创文”活动,投入一定资金用于绿化一块闲置空地,购买了甲、乙两种树木共72棵,其中甲种树木每棵90元,乙种树木每棵80元,共用去资金6160元.
(1)求甲、乙两种树木各购买了多少棵?
(2)经过一段时间后,种植的这批树木成活率高,绿化效果好,该街道决定再购买一批这两种树木绿化另一块闲置空地,两种树木的购买数量均与第一批相同,购买时发现甲种树木单价上涨了,乙种树木单价下降了,且总费用不超过6804元,求的最大值.
【答案】(1)甲种40棵,乙种32棵,(2)25.
【解析】
(1)设甲种树苗购买了棵,乙种树苗购买了棵,根据总费用单价数量结合“购买了甲、乙两种树木共72棵,共用去资金6160元”,即可得出关于,的二元一次方程组,解之即可得出结论;
(2)根据总费用单价数量结合总费用不超过6804元,即可得出关于的一元一次不等式,解之取其中的最大值即可得出结论.
解:(1)设甲种树苗购买了棵,乙种树苗购买了棵,
根据题意得:,
解得:.
答:甲种树苗购买了40棵,乙种树苗购买了32棵.
(2)根据题意得:,
解得:.
答:的最大值为25.
【题目】我市某中学对本校初中学生完成家庭作业的时间做了总量控制,规定每天完成家庭作业的时间不超过1.5小时.该校数学课外兴趣小组对本校初中学生回家完成作业的时间做了一次随机抽样调查,并绘制出如图所示的频数分布表和频数分布直方图的一部分.
时间/时 | 频数 | 百分比 |
0≤t<0.5 | 4 | 0.1 |
0.5≤t<1 | a | 0.3 |
1≤t<1.5 | 10 | 0.25 |
1.5≤t<2 | 8 | b |
2≤t<2.5 | 6 | 0.15 |
合计 | 1 |
(1)求表中a,b的值;
(2)补全频数分布直方图;
(3)请你估算该校1400名初中学生中,约有多少名学生在1.5小时以内完成了家庭作业.