题目内容
【题目】23表示( )A.2×2×2B.2×3C.3×3D.2+2+2
【答案】A【解析】解:23表示2×2×2.
所以答案是:A.
【题目】分解因式:2ax2﹣8a= .
【题目】如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,点E是边BC的中点.
(1)、求证:BC 2=BDBA;
(2)、判断DE与⊙O位置关系,并说明理由.
【题目】为支持亚太地区国家基础设施建设,由中国倡议设立亚投行,截止2015年4月15日,亚投行意向创始成员国确定为57个,其中意向创始成员国数亚欧是欧洲的2倍少2个,其余洲共5个,则亚洲意向创始成员国有个.
【题目】若关于x的方程ax﹣6=2的解为=﹣2,则a= .
【题目】(1)如图①,一个无盖的长方体盒子的棱长分别为,,,盒子的内部顶点处有一只昆虫甲,在盒子的内部顶点处有一只昆虫乙(盒壁的厚度忽略不计)假设昆虫甲在顶点处静止不动,请计算处的昆虫乙沿盒子内壁爬行到昆虫甲处的最短路程,并画出其最短路径,简要说明画法
(2)如果(1)问中的长方体的棱长分别为,,如图②,假
设昆虫甲从盒内顶点以1厘米/秒的速度在盒子的内部沿棱向下爬行,同时昆虫乙从
盒内顶点以3厘米/秒的速度在盒壁的侧面上爬行,那么昆虫乙至少需要多长时间才能捕
捉到昆虫甲?
【题目】分解因式:5x3-10x2+5x=____.
【题目】如图,在平面直角坐标系中,直线分别交轴,轴于A,B两点,点C为OB的中点,点D在第二象限,且四边形AOCD为矩形.
(1)直接写出点A,B的坐标,并求直线AB与CD交点E的坐标;
(2)动点P从点C出发,沿线段CD以每秒1个单位长度的速度向终点D运动;同时,动点N从点A出发,沿线段AO以每秒1个单位长度的速度向终点O运动,过点P作,垂足为H,连接NP.设点P的运动时间为秒.
①若△NPH的面积为1,求的值;
②点Q是点B关于点A的对称点,问是否有最小值,如果有,求出相应的点P的坐标;如果没有,请说明理由.
【题目】某校八年级近期实行小班教学,若每间教室安排20名学生,则缺少3间教室;若每间教室安排24名学生,则空出一间教室.问这所学校共有教室多少间?