题目内容
【题目】如图,若抛物线的顶点在抛物线上,抛物线的顶点也在抛物线上(点与点不重合),我们定义:这样的两条抛物,互为“友好”抛物线,可见一条抛物线的“友好”抛物线可以有多条.
如图,已知抛物线与轴交于点,试求出点关于该抛物线对称轴对称的点的坐标;
请求出以点为顶点的的友好抛物线的解析式,并指出与中同时随增大而增大的自变量的取值范围;
若抛物的任意一条友好抛物线的解析式为,请写出与的关系式,并说明理由.
【答案】(1);(2),;(3).
【解析】
(1)设x=0,求出y的值,即可得到C的坐标,把抛物线L3:y=2x2﹣8x+4配方即可得到抛物线的对称轴,由此可求出点C关于该抛物线对称轴对称的对称点D的坐标;
(2)由(1)可知点D的坐标为(4,4),再由条件以点D为顶点的L3的“友好”抛物线L4的解析式,可求出L4的解析式,进而可求出L3与L4中y同时随x增大而增大的自变量的取值范围;
(3)根据抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上,可以列出两个方程,相加可得(a1+a2)(h﹣m)2=0.可得a1+a2=0.
(1)∵抛物线L3:y=2x2﹣8x+4,∴y=2(x﹣2)2﹣4,∴顶点为(2,-4),对称轴为x=2,设x=0,则y=4,∴C(0,4),∴点C关于该抛物线对称轴对称的对称点D的坐标为:(4,4);
(2)∵以点D(4,4)为顶点的L3的友好抛物线L4还过点(2,﹣4),∴L4的解析式为y=﹣2(x﹣4)2+4,由图象可知,当2≤x≤4时,抛物线L3与L4中y同时随x增大而增大;
(3)a1与a2的关系式为a1+a2=0.
理由如下:
∵抛物线y=a1 (x﹣m)2+n的一条“友好”抛物线的解析式为y=a2 (x﹣h)2+k,∴y=a2 (x﹣h)2+k过点(m,n),且y=a1 (x﹣m)2+n过点(h,k),即
k=a1 (h﹣m)2+n…①
n=a2 (m﹣h)2+k…②
由①+②得:(a1+a2)(h﹣m)2=0.
又“友好”抛物线的顶点不重合,∴h≠m,∴a1+a2=0.