题目内容
【题目】已知a=2019x+2018,b=2019x+2019,c=2019x+2020.则多项式a2+b2+c2﹣ab﹣bc﹣ac的值为( )
A. 1B. 2C. 3D. 4
【答案】C
【解析】
把已知的式子化成[(a-b)2+(a-c)2+(b-c)2]的形式,然后代入求解.
解:∵a=2019x+2018,b=2019x+2019,c=2019x+2020.,
∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,
则原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)
= [(a2﹣2ab+b2)+(a2﹣2ac+c2)+(b2﹣2bc+c2)]
= [(a﹣b)2+(a﹣c)2+(b﹣c)2]
=×[1+4+1]
=3,
故选:C.
练习册系列答案
相关题目
【题目】代数式ax2+bx+c(a≠0,a,b,c是常数)中,x与ax2+bx+c的对应值如下表:
x | ﹣1 | ﹣ | 0 | 1 | 2 | 3 | |||
ax2+bx+c | ﹣2 | ﹣ | 1 | 2 | 1 | ﹣ | ﹣2 |
请判断一元二次方程ax2+bx+c=0(a≠0,a,b,c是常数)的两个根x1 , x2的取值范围是下列选项中的( )
A.﹣ <x1<0, <x2<2
B.﹣1<x1<﹣ ,2<x2<
C.﹣ <x1<0,2<x2<
D.﹣1<x1<﹣ , <x2<2