题目内容
【题目】甲、乙两名学生参加数学素质测试(有四项),每项测试成绩采用百分制,成绩如表:
学生 | 数与代数 | 空间与图形 | 统计与概率 | 综合与实践 | 平均成绩 | 方差 |
甲 | 87 | 93 | 91 | 85 | 89 | |
乙 | 89 | 96 | 91 | 80 | 13 |
(1)请计算甲的四项成绩的方差和乙的平均成绩;
(2)若数与代数、空间与图形、统计与概率、综合与实践的成绩按4:3:2:1计算,哪个学生数学综合素质测试成绩更好?请说明理由.
【答案】
(1)
解:甲的平均成绩=(87+93+91+85)÷4=89;
乙的平均成绩(89+96+91+80)÷4=89;
甲的方差S甲2= [(87﹣89)2+(93﹣89)2+(91﹣89)2+(85﹣89)2]= ×(16+4+4+16)=10;
乙的方差S乙2= [(89﹣89)2+(96﹣89)2+(91﹣89)2+(80﹣89)2]= ×(0+49+4+81)=33.5;
(2)
解:若按4:3:2:1计分,则乙应当选;
理由如下:
甲的分数= ×87+ ×93+ ×91+ ×85=89.4;
乙的分数= ×89+ ×96+ ×91+ ×80=90.6.
故应选乙;
故答案为:89;10.
【解析】根据平均数和方差及加权成绩的概念计算.
【考点精析】认真审题,首先需要了解统计表(制作统计表的步骤:(1)收集整理数据.(2)确定统计表的格式和栏目数量,根据纸张大小制成表格.(3)填写栏目、各项目名称及数据.(4)计算总计和合计并填入表中,一般总计放在横栏最左格,合计放在竖栏最上格.(5)写好表格名称并标明制表时间).
练习册系列答案
相关题目