题目内容
【题目】如图1,在正方形ABCD中,对角线AC、BD相交于点O,点E为线段BO上一点,连接CE,将CE绕点C顺时针旋转90°得到CF,连接EF交CD于点G.
(1)若AB=4,BE=,求△CEF的面积.
(2)如图2,线段FE的延长线交AB于点H,过点F作FM⊥CD于点M,求证:BH+MG=BE;
(3)如图3,点E为射线OD上一点,线段FE的延长线交直线CD于点G,交直线AB于点H,过点F作FM垂直直线CD于点M,请直接写出线段BH、MG、BE的数量关系.
【答案】(1)5;(2)见解析;(3)BH﹣MG=BE.
【解析】
(1)如图1中,利用勾股定理计算CE的长,由旋转可知△CEF是等腰直角三角形,可得结论;
(2)如图2,过E作EN⊥AB于N,作EP⊥BC于P,证明△CPE≌△CMF(AAS),得EP=FM,由角平分线的性质得EP=EN=FM,证明△NHE≌△MGF(AAS),得NH=MG,由△BEN是等腰直角三角形,得BN=BE,最后由线段的和可得结论;
(3)如图3,构建辅助线,构建全等三角形,证明△CPE≌△FMC(AAS),得EP=CM,PC=FM,由△DPE是等腰直角三角形,得PE=PD,证明△HNE≌△GMF(AAS),由△BEN是等腰直角三角形,得BN=BE,同理可得结论.
(1)解:在正方形ABCD中,AB=4,
∴AO=CO=OB=2,
∵BE= ,
∴OE=,
∵AC⊥BD,
∴∠COE=90°,
∴CE= ,
由旋转得:CE=CF,∠ECF=90°,
∴△CEF的面积=;
(2)证明:如图2,过E作EN⊥AB于N,作EP⊥BC于P,
∵EP⊥BC,FM⊥CD,
∴∠EPC=∠FMC=90°,
∵∠BCD=∠ECF=90°,
∴∠PCE=∠MCF,
∵CE=CF,
∴△CPE≌△CMF(AAS),
∴EP=FM,
∵EP⊥BC,EN⊥AB,BE平分∠ABC,
∴EP=EN,
∴EN=FM,
∵FM⊥CD,
∴∠FMG=∠ENH=90°,
∵AB∥CD,
∴∠NHE=∠MGF,
∴△NHE≌△MGF(AAS),
∴NH=MG,
∴BH+MG=BH+NH=BN,
∵△BEN是等腰直角三角形,
∴BN=BE,
∴BH+MG=BE;
(3)解:BH﹣MG=BE,理由是:
如图3,过E作EN⊥AB于N,交CG于P,
∵EP⊥BC,FM⊥CD,AB∥CD,
∴EP⊥CD,
∴∠EPC=∠FMC=90°,
∵∠M=∠ECF=90°,
∴∠ECP+∠FCM=∠FCM+∠CFM=90°,
∴∠ECP=∠CFM,
∵CE=CF,
∴△CPE≌△FMC(AAS),
∴PC=FM,
∵△DPE是等腰直角三角形,
∴PE=PD,
∴EN=BN=PN+PE=BC+PE=CD+PD=PC=FM,
∵AB∥CD,
∴∠H=∠FGM,
∵∠ENH=∠M=90°,
∴△HNE≌△GMF(AAS),
∴NH=MG,
∴BH﹣MG=BH﹣NH=BN,
∵△BEN是等腰直角三角形,
∴BN=BE,
∴BH﹣MG=BE.
【题目】某校为提高学生体考成绩,对全校300名九年级学生进行一分种跳绳训练.为了解学生训练效果,学校体育组在九年级上学期开学初和学期末分别对九年级学生进行一分种跳绳测试,学生成绩均为整数,满分20分,大于18分为优秀.现随机抽取了同一部分学生的两次成绩进行整理、描述和分析.(成绩得分用x表示,共分成五组:A.x<13,B.13≤x<15,C.15≤x<17,D.17≤x<19,E.19≤x≤20)
开学初抽取学生的成绩在D组中的数据是:17,17,17,17,17,18,18.
学期末抽取学生成绩统计表
学生成绩 | A组 | B组 | C组 | D组 | E组 |
人数 | 0 | 1 | 4 | 5 | a |
分析数据:
平均数 | 中位数 | 众数 | |
开学初抽取学生成绩 | 16 | b | 17 |
学期末抽取学生成绩 | 18 | 18.5 | 19 |
根据以上信息,解答下列问题:
(1)直接写出图表中a、b的值,并补全条形统计图;
(2)假设该校九年级学生都参加了两次测试,估计该校学期末成绩优秀的学生人数比开学初成绩优秀的学生人数增加了多少?
(3)小莉开学初测试成绩16分,学期末测试成绩19分,根据抽查的相关数据,请选择一个合适的统计量评价小莉的训练效果.
【题目】某学校为了了解九年级学生上学期间平均每天的睡眠情况,现从全校名九年级学生中随机抽取了部分学生,调查了这些同学上学期间平均每天的睡眠时间(单位:小时),并根据调查结果列出统计表,绘制成扇形统计图,如图所示.请你根据图表提供的信息解答下列问题:
平均每天睡眠时间分组统计表
组别序号 | 睡眠时间(小时) | 人数(频数) |
组 | ||
组 | ||
组 | ||
组 |
平均每天睡眠时间扇形统计表
(1)_______,_______,_______(为百分号前的数字);
(2)随机抽取的这部分学生平均每天睡眠时间的中位数落在_______组(填组别序号);
(3)估计全校名九年级学生中平均每天睡眠时间不低于小时的学生有_______名;
(4)若所抽查的睡眠时间(小时)的名学生,其中名男生和名女生,现从这名学生中随机选取名学生参加个别访谈,请用列表或画树状图的方法求选取的名学生恰为男女的概率.