题目内容
【题目】如图所示,在△ABC中,∠BAC=90°,AD⊥BC于D,∠ACB的平分线交AD于E,交AB于F,FG⊥BC于G,请猜测AE与FG之间有怎样的数量关系,并说明理由.
【答案】解:AE与FG之间的数量关系是相等.
理由:∵CF平分∠ACB,FA⊥AC,FG⊥BC
∴FG=FA
∵∠AFC+∠ACF=90°,∠DEC+∠ECD=90°,且∠ACF=∠ECD
∴∠AFC=∠DEC
∵∠AEF=∠DEC
∴∠AFC=∠AEF
∴AE=FA
∴AE=FG
【解析】根据角平分线上的点到两边的距离相等可得:FG=FA;则只要在确定FA与AE的关系即可确定AE与FG之间的关系;在直角三角形AFC中∠AFC+∠ACF=90°,在直角三角形CDE中,∠DEC+∠ECD=90°,根据角平分线的性质可知:∠ACF=∠DCE,则∠AFC=∠DEC,又知∠AEF=∠DEC,则∠AFC=∠AEF,所以AE=FA,则AE=FG.
【考点精析】本题主要考查了角平分线的性质定理的相关知识点,需要掌握定理1:在角的平分线上的点到这个角的两边的距离相等; 定理2:一个角的两边的距离相等的点,在这个角的平分线上才能正确解答此题.
练习册系列答案
相关题目