题目内容
【题目】如图,C为线段AE上一点(不与点A、E重合),在AE同侧分别作等边△ABC和等边△CDE,连接AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ、OC,以下四个结论:①△BOC≌△EDO;②DE=DP;③∠AOC=∠COE;④OC⊥PQ.其中正确的结论有( )
A.1个B.2个C.3个D.4个
【答案】A
【解析】
证明△ACD与△BCE全等,可得∠CAD=∠CBE,得出∠AOE=120°,作CG⊥AD于G,CH⊥BE于H,证明△ACG≌△BCH(AAS),得出CG=CH,证出OC平分∠AOE,∠AOC=∠COE,③正确;证出∠BOC≠∠EDO,得出△BOC与△EDO不全等,①错误;证明△ACP≌△BCQ(ASA),得出AP=BQ,PC=QC,可推出DP=EQ,再根据△DEQ的角度关系DE≠DP,可得②错误.证出PQ∥AE,推出OC与AE不垂直,得出OC与PQ不垂直,④错误;即可得出答案.
解:∵△ABC和△CDE是等边三角形,
∴AC=BC,CD=CE,∠ACB=∠ECD=60°,
∴180°﹣∠ECD=180°﹣∠ACB,
即∠ACD=∠BCE,
在△ACD与△BCE中,,
∴△ACD≌△BCE(SAS),
∴AD=BE,∠CAD=∠CBE,
∴∠AOB=∠CAD+∠CEB=∠CBE+∠CEB=∠ACB=60°,
∴∠AOE=120°,
作CG⊥AD于G,CH⊥BE于H,如图所示:
在△ACG和△BCH中,,
∴△ACG≌△BCH(AAS),
∴CG=CH,
∴OC平分∠AOE,
∴∠AOC=∠COE,③正确;
∵∠BOC=∠AOB+∠AOC=120°,∠DOC=∠DOQ+∠COE=120°,
∴∠ODC+∠OCD=60°,
∴∠ODC<60°,
∴∠EDO=∠CDE+∠ODC<120°,
∴∠BOC≠∠EDO,
∴△BOC与△EDO不全等,①错误;
∵∠ACB=∠ECD=60°,
∴∠BCQ=180°﹣60°×2=60°,
∴∠ACB=∠BCQ=60°,
在△ACP与△BCQ中,,
∴△ACP≌△BCQ(ASA),
∴AP=BQ,PC=QC,
∵AD=BE,
∴AD﹣AP=BE﹣BQ,
∴DP=QE,
∵∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,
∴∠DQE≠∠CDE,故②错误.
∵PC=QC,∠PCQ=60°,
∴△PCQ是等边三角形,
∴∠CPQ=60°,
∴∠ACB=∠CPQ,
∴PQ∥AE,
∵∠AOC=60°,
当OC⊥AE时,∠OAC=30°,
则AP平分∠BAC,
而AP不是∠BAC的平分线,
∴OC与AE不垂直,
∴OC与PQ不垂直,④错误;
正确的结论有1个,
故选:A.
【题目】(7分)某中学1000名学生参加了”环保知识竞赛“,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)作为样本进行统计,并制作了如图频数分布表和频数分布直方图(不完整且局部污损,其中“■”表示被污损的数据).请解答下列问题:
成绩分组 | 频数 | 频率 |
50≤x<60 | 8 | 0.16 |
60≤x<70 | 12 | a |
70≤x<80 | ■ | 0.5 |
80≤x<90 | 3 | 0.06 |
90≤x≤100 | b | c |
合计 | ■ | 1 |
(1)写出a,b,c的值;
(2)请估计这1000名学生中有多少人的竞赛成绩不低于70分;
(3)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学参加环保知识宣传活动,求所抽取的2名同学来自同一组的概率.