题目内容
(本题满分12分)已知:如图一次函数y=x+1的图象与x轴交于点A,与y轴交于点B;二次函数y=x2+bx+c的图象与一次函数y=x+1的图象交于B、C两点,与x轴交于D、E两点且D点坐标为(1,0)
(1)求二次函数的解析式;
(2)求四边形BDEC的面积S;
(3)在x轴上是否存在点P,使得△PBC是以P为直角顶点的直角三角形?若存在,求出所有的点P,若不存在,请说明理由.
(1)求二次函数的解析式;
(2)求四边形BDEC的面积S;
(3)在x轴上是否存在点P,使得△PBC是以P为直角顶点的直角三角形?若存在,求出所有的点P,若不存在,请说明理由.
(1)y=x2-x+1
(2)
(3)P的坐标为(1,0)或(3,0)
解:(1)将B(0,1),D(1,0)的坐标代入y=x2+bx+c得
得解析式y=x2-x+1……………………………………………………3分
(2)设C(x0,y0),则有
解得∴C(4,3).……………………………………………6分
由图可知:S=S△ACE-S△ABD.又由对称轴为x=可知E(2,0).
∴S=AE·y0-AD×OB=×4×3-×3×1=…………………………………8分
(3)设符合条件的点P存在,令P(a,0):
当P为直角顶点时,如图:过C作CF⊥x轴于F.
∵Rt△BOP∽Rt△PFC,∴.即.
整理得a2-4a+3=0.解得a=1或a=3
∴所求的点P的坐标为(1,0)或(3,0)
综上所述:满足条件的点P共有二个………………………………………………………12分
得解析式y=x2-x+1……………………………………………………3分
(2)设C(x0,y0),则有
解得∴C(4,3).……………………………………………6分
由图可知:S=S△ACE-S△ABD.又由对称轴为x=可知E(2,0).
∴S=AE·y0-AD×OB=×4×3-×3×1=…………………………………8分
(3)设符合条件的点P存在,令P(a,0):
当P为直角顶点时,如图:过C作CF⊥x轴于F.
∵Rt△BOP∽Rt△PFC,∴.即.
整理得a2-4a+3=0.解得a=1或a=3
∴所求的点P的坐标为(1,0)或(3,0)
综上所述:满足条件的点P共有二个………………………………………………………12分
练习册系列答案
相关题目