题目内容
在平面直角坐标系xOy中,对于点P(a,b)和点Q(a,b'),给出如下定义:
若b'=,则称点Q为点P的限变点.例如:点(3,﹣2)的限变点的坐标是(3,﹣2),点(﹣1,5)的限变点的坐标是(﹣1,﹣5).
(1)①点(﹣,1)的限变点的坐标是 ;
②在点A(﹣1,2),B(﹣2,﹣1)中有一个点是函数y=图象上某一个点的限交点,这个点是 ;
(2)若点P在函数y=﹣x+3的图象上,当﹣2≤x≤6时,求其限变点Q的纵坐标b'的取值范围;
(3)若点P在关于x的二次函数y=x2﹣2tx+t2+t的图象上,其限变点Q的纵坐标b'的取值范围是b'≥m或b'<n,其中m>n.令s=m﹣n,求s关于t的函数解析式及s的取值范围.
练习册系列答案
相关题目