题目内容
【题目】阅读下列因式分解的过程,再回答所提出的问题:
1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]
=(1+x)2(1+x)
=(1+x)3
(1)上述分解因式的方法是 ,共应用了 次.
(2)若分解1+x+x(x+1)+x(x+1)2+…+ x(x+1)2004,则需应用上述方法 次,结果是 .
(3)分解因式:1+x+x(x+1)+x(x+1)2+…+ x(x+1)n(n为正整数).
【答案】(1)提公因式,两次;(2)2004次,(x+1);(3) (x+1)
【解析】
(1)根据已知材料直接回答即可;
(2)利用已知材料进而提取公因式(1+x),进而得出答案;
(3)利用已知材料提取公因式进而得出答案.
(1)上述分解因式的方法是:提公因式法,共应用了2次.
故答案为:提公因式法,2次;
(2)1+x+x(x+1)+x(x+1)2+…+ x(x+1)2004,
=(1+x)[1+x+x(1+x)+…+ x(x+1)2003]
=
=(1+x)2005,
故分解1+x+x(x+1)+x(x+1)2+…+ x(x+1)2004,,则需应用上述方法2004次,结果是:(x+1)2005.
(3)分解因式:1+x+x(x+1)+x(x+1)2…+x(x+1)n(n为正整数)的结果是:(x+1)n+1.
故答案为:(x+1)n+1.
练习册系列答案
相关题目