题目内容
(2013•抚顺)如图,在△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,DE⊥BC,垂足为E.
(1)求证:DE是⊙O的切线;
(2)若DG⊥AB,垂足为点F,交⊙O于点G,∠A=35°,⊙O半径为5,求劣弧DG的长.(结果保留π)
(1)求证:DE是⊙O的切线;
(2)若DG⊥AB,垂足为点F,交⊙O于点G,∠A=35°,⊙O半径为5,求劣弧DG的长.(结果保留π)
分析:(1)连接BD,OD,求出OD∥BC,推出OD⊥DE,根据切线判定推出即可;
(2)求出∠BOD=∠GOB,求出∠BOD的度数,根据弧长公式求出即可.
(2)求出∠BOD=∠GOB,求出∠BOD的度数,根据弧长公式求出即可.
解答:(1)证明:连接BD、OD,
∵AB是⊙O直径,
∴∠ADB=90°,
∴BD⊥AC,
∵AB=BC,
∴AD=DC,
∵AO=OB,
∴DO∥BC,
∵DE⊥BC,
∴DE⊥OD,
∵OD为半径,
∴DE是⊙O切线;
(2)解:∵DG⊥AB,OB过圆心O,
∴弧BG=弧BD,
∵∠A=35°,
∴∠BOD=2∠A=70°,
∴∠BOG=∠BOD=70°,
∴∠GOD=140°,
∴劣弧DG的长是
=
π.
∵AB是⊙O直径,
∴∠ADB=90°,
∴BD⊥AC,
∵AB=BC,
∴AD=DC,
∵AO=OB,
∴DO∥BC,
∵DE⊥BC,
∴DE⊥OD,
∵OD为半径,
∴DE是⊙O切线;
(2)解:∵DG⊥AB,OB过圆心O,
∴弧BG=弧BD,
∵∠A=35°,
∴∠BOD=2∠A=70°,
∴∠BOG=∠BOD=70°,
∴∠GOD=140°,
∴劣弧DG的长是
140π×5 |
180 |
35 |
9 |
点评:本题考查了弧长公式,切线的判定,平行线性质和判定,圆周角定理,等腰三角形的性质和判定,三角形的中位线等知识点的应用,主要考查学生综合运用定理进行推理和计算的能力.
练习册系列答案
相关题目