题目内容
【题目】如图,在△ABC中,AB=AC,D是AB的中点,且DE⊥AB,△BCE的周长为8cm,且AC﹣BC=2cm,求AB、BC的长.
【答案】AB=5cm,BC=3cm.
【解析】试题分析:根据△ABC中,AB=AC,D是AB的中点,且DE⊥AB可知,AE=BE,根据△BCE的周长为8cm可求出BC+AC的长,再根据AC﹣BC=2cm即可求解.
试题解析:解:∵△ABC中,AB=AC,D是AB的中点,且DE⊥AB,∴AE=BE,∵△BCE的周长为8cm,即BE+CE+BC=8cm,∴AC+BC=8cm…①,∵AC﹣BC=2cm…②,①+②得,2AC=10cm,即AC=5cm,故AB=5cm;
①﹣②得,2BC=6cm,BC=3cm.
故AB=5cm,BC=3cm.
练习册系列答案
相关题目
【题目】如图,是一种斜挎包,其挎带由双层部分、单层部分和调节扣构成.小敏用后发现,通过调节扣加长或缩短单层部分的长度,可以使挎带的长度(单层部分与双层部分长度的和,其中调节扣所占的长度忽略不计)加长或缩短.设单层部分的长度为cm,双层部分的长度为cm,经测量,得到如下数据:
(1)根据表中数据的规律,完成以下表格(填括号),并直接写出关于的函数解析式;
单层部分的长度(cm) | … | 4 | 6 | 8 | 10 | … | 150 |
双层部分的长度(cm) | … | 73 | 72 | 71 | ( ) | … | ( ) |
(2)根据小敏的身高和习惯,挎带的长度为120cm时,背起来正合适,请求出此时单层部分的长度;
(3)设挎带的长度为cm,求的取值范围.