题目内容
设x,y,z为互不相等的非零实数,且x+
=y+
=z+
.求证:x2y2z2=1.
| 1 |
| y |
| 1 |
| z |
| 1 |
| x |
证明:由已知x+
=y+
=z+
得出:
∵x+
=y+
,
∴x-y=
-
,
x-y=
,
∴yz=
,①
同理得出
zx=
,②
xy=
.③
①×②×③得x2y2z2=1.
| 1 |
| y |
| 1 |
| z |
| 1 |
| x |
∵x+
| 1 |
| y |
| 1 |
| z |
∴x-y=
| 1 |
| z |
| 1 |
| y |
x-y=
| y-z |
| yz |
∴yz=
| y-z |
| x-y |
同理得出
zx=
| z-x |
| y-z |
xy=
| x-y |
| z-x |
①×②×③得x2y2z2=1.
练习册系列答案
相关题目