题目内容

【题目】如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°得到线段AQ,若PA=6,PB=8,PC=10,则∠APB=°.

【答案】150
【解析】解:连结PQ,如图,

∵△ABC为等边三角形,

∴∠BAC=60°,AB=AC,

∵线段AP绕点A顺时针旋转60°得到线段AQ,

∴AP=PQ=6,∠PAQ=60°,

∴△APQ为等边三角形,

∴PQ=AP=6,

∵∠CAP+∠BAP=60°,∠BAP+∠BAQ=60°,

∴∠CAP=∠BAQ,

在△APC和△ABQ中,

∴△APC≌△ABQ,

∴PC=QB=10,

在△BPQ中,∵PB2=82=64,PQ2=62,BQ2=102

而64+36=100,

∴PB2+PQ2=BQ2

∴△PBQ为直角三角形,∠BPQ=90°,

∴∠APB=90°+60°=150°.

【考点精析】认真审题,首先需要了解等边三角形的性质(等边三角形的三个角都相等并且每个角都是60°),还要掌握勾股定理的逆定理(如果三角形的三边长a、b、c有下面关系:a2+b2=c2,那么这个三角形是直角三角形)的相关知识才是答题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网