题目内容

【题目】如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D,E为BC的中点,连接DE并延长交AC的延长线于点F.
(1)求证:DE是⊙O的切线;
(2)若CF=2,DF=4,求⊙O直径的长.

【答案】
(1)解:如图,连接OD、CD,

∵AC为⊙O的直径,

∴△BCD是直角三角形,

∵E为BC的中点,

∴BE=CE=DE,

∴∠CDE=∠DCE,

∵OD=OC,

∴∠ODC=∠OCD,

∵∠ACB=90°,

∴∠OCD+∠DCE=90°,

∴∠ODC+∠CDE=90°,即OD⊥DE,

∴DE是⊙O的切线


(2)解:设⊙O的半径为r,

∵∠ODF=90°,

∴OD2+DF2=OF2,即r2+42=(r+2)2

解得:r=3,

∴⊙O的直径为6


【解析】(1)连接OD、CD,由AC为⊙O的直径知△BCD是直角三角形,结合E为BC的中点知∠CDE=∠DCE,由∠ODC=∠OCD且∠OCD+∠DCE=90°可得答案;(2)设⊙O的半径为r,由OD2+DF2=OF2 , 即r2+42=(r+2)2可得r=3,即可得出答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网