题目内容
【题目】在平面直角坐标系xOy中,直线l与x轴,y轴分别交于A、B两点,且过点B(0,4)和C(2,2)两点.
(1)求直线l的解析式;
(2)求△AOB的面积;
(3)点P是x轴上一点,且满足△ABP为等腰三角形,直接写出所有满足条件的点P的坐标.
【答案】(1)y=﹣x+4;(2)8;(3)点P坐标为(﹣4,0)或(4+4,0)或(4﹣4,0)或(0,0)
【解析】
(1)直线过(2,2)和(0,4)两点,则 待定系数法求解析式.
(2)先求A点坐标,即可求△AOB的面积
(3)分三类讨论,可求点P的坐标
解(1)设直线l的解析式y=kx+b
∵直线过(2,2)和(0,4)
∴
解得:
∴直线l的解析式y=﹣x+4
(2)令y=0,则x=4
∴A(4,0)
∴S△AOB=×AO×BO=×4×4=8
(3)∵OA=4,OB=4
∴AB=4
若AB=AP=4
∴在点A左边,OP=4﹣4,
在点A右边,OP=4+4
∴点P坐标(4+4,0),(4﹣4,0)
若BP=BP=4
∴P(﹣4,0)
若AP=BP则点P在AB的垂直平分线上,
∵△AOB是等腰直角三角形,
∴AB的垂直平分线过点O
∴点P坐标(0,0)
练习册系列答案
相关题目