题目内容
【题目】已知△ABC是等腰三角形,AB=AC.
(1)特殊情形:如图1,当DE∥BC时,有DB EC.(填“>”,“<”或“=”)
(2)发现探究:若将图1中的△ADE绕点A顺时针旋转α(0°<α<180°)到图2位置,则(1)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.
(3)拓展运用:如图3,P是等腰直角三角形ABC内一点,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度数.
【答案】(1)=;(2)成立,证明见解析;(3)135°.
【解析】
试题分析:(1)∵DE∥BC,∴∠ADE=∠B,∠AED=∠C.∵AB=AC,∴∠B=∠C.∴∠ADE=∠AED,∴AD=EA,∴BD=CE;(2)根据旋转可得△DAB≌△EAC,从而DB=CE;(3)将△CPB绕点C旋转90°得△CEA,连接PE,可得PE=,根据PE2+AE2=AP2,推出△PEA是直角三角形.进而可求得∠BPC的度数.
试题解析:(1)=;(2)成立,原因如下:由旋转可得AD=AE,∠DAB=∠CAE,又∵AB=AC,∴△DAB≌△EAC,∴DB=CE.(3)将△CPB绕点C旋转90°得△CEA,连接PE,∴△CPB≌△CEA,∴CE=CP=2,AE=BP=1,∠PCE=90°,
∴∠CEP=∠CPE=45°,在Rt△PCE中,,在△PEA中,PE2=()2=8,AE2=12=1,PA2=32=9,∵PE2+AE2=AP2,∴△PEA是直角三角形.∴∠PEA=90°,∴∠CEA=135°,又∵△CPB≌△CEA,
∴∠BPC=∠CEA=135°.
练习册系列答案
相关题目