ÌâÄ¿ÄÚÈÝ
7£®¢ÙÏòÌå»ýVÓÍ=1mLµÄÓÍËáÖмӾƾ«£¬Ö±ÖÁ×ÜÁ¿´ïµ½V×Ü=500mL£»
¢ÚÓÃ×¢ÉäÆ÷ÎüÈ¡¢ÙÖÐÅäÖÆºÃµÄ¾Æ¾«ÓÍËáÈÜÒº£¬°ÑËüÒ»µÎÒ»µÎµØµÎÈëСÁ¿Í²ÖУ¬µ±µÎÈën=100µÎʱ£¬²âµÃÆäÌå»ýÇ¡ºÃÊÇV0=1mL£»
¢ÛÏÈÍù±ß³¤Îª30cm¡«40cmµÄdzÅÌÀïµ¹Èë2cmÉîµÄË®£¬È»ºó½«ðò×Ó·Û»òʯ¸à·Û¾ùÔȵØÈöÔÚË®ÃæÉÏ£»
¢ÜÓÃ×¢ÉäÆ÷ÍùË®ÃæÉϵÎÒ»µÎ¾Æ¾«ÓÍËáÈÜÒº£¬´ýÓÍËᱡĤÐÎ×´Îȶ¨ºó£¬½«ÊÂÏÈ×¼±¸ºÃµÄ²£Á§°å·ÅÔÚdzÅÌÉÏ£¬²¢ÔÚ²£Á§°åÉÏÃèÏÂÓÍËáĤµÄÐÎ×´£»
¢Ý½«»ÓÐÓÍËáĤÂÖÀªµÄ²£Á§°å·ÅÔÚ×ø±êÖ½ÉÏ£¬ÈçͼËùʾ£¬Êý³öÂÖÀª·¶Î§ÄÚС·½¸ñµÄ¸öÊýN£¬Ð¡·½¸ñµÄ±ß³¤l=20mm£®
¸ù¾ÝÒÔÉÏÐÅÏ¢£¬»Ø´ðÏÂÁÐÎÊÌ⣺
£¨1£©²½Öè¢ÛÖÐÓ¦Ìîд£ºðò×Ó·Û»òʯ¸à·Û£»
£¨2£©1µÎ¾Æ¾«ÓÍËáÈÜÒºÖд¿ÓÍËáµÄÌå»ýV¡äÊÇ$2¡Á1{0}_{\;}^{-5}$mL£»
£¨3£©ÓÍËá·Ö×ÓÖ±¾¶ÊÇ$4.3¡Á1{0}_{\;}^{-10}$m£¨½á¹û±£ÁôÁ½Î»ÓÐЧÊý×Ö£©£®
£¨4£©Ä³Ñ§ÉúÔÚ×ö¡°ÓÃÓÍĤ·¨¹À²â·Ö×ӵĴóС¡±µÄʵÑéʱ£¬¼ÆËã½á¹ûÆ«´ó£¬¿ÉÄÜÊÇÓÉÓÚAC
A£®ÓÍËáδÍêȫɢ¿ª
B£®ÓÍËáÈÜҺŨ¶ÈµÍÓÚʵ¼ÊÖµ
C£®¼ÆËãÓÍÄ¤Ãæ»ýʱ£¬ÉáÈ¥ÁËËùÓв»×ãÒ»¸ñµÄ·½¸ñ
D£®ÇóÿµÎÌå»ýʱ£¬1mLµÄÈÜÒºµÄµÎÊý¶à¼ÇÁË10µÎ
£¨5£©ÓÃÓÍĤ·¨²â³ö·Ö×ÓÖ±¾¶ºó£¬Òª²â³ö°¢·ü¼ÓµÂÂÞ³£Êý£¬Ö»ÐèÖªµÀÓ͵εÄB
A£®Ä¦¶ûÖÊÁ¿ B£®Ä¦¶ûÌå»ý C£®Ìå»ý D£®Ãܶȣ®
·ÖÎö ΪÁËÇå³þµØ¿´³öÓÍĤµÄÐÎ×´Ó¦ÔÚË®ÃæÉÏÈöÉÏðò×Ó·Û£»ÏÈÇó³ö1µÎÓÍËá¾Æ¾«ÈÜÒºÖд¿ÓÍËáµÄÌå»ý£¬ÔÙÓô¿ÓÍËáµÄÌå»ý³ýÒÔÓÍĤµÄÃæ»ý¼´µÃµ½ÓÍËá·Ö×ÓµÄÖ±¾¶£»ÓÃÓÍĤ·¨¹À²â·Ö×ÓÖ±¾¶ÊµÑéÔÀíÊÇ£ºÈÃÒ»¶¨Ìå»ýµÄ´¿ÓÍËáµÎÔÚË®ÃæÉÏÐγɵ¥·Ö×ÓÓÍĤ£¬¹ÀËã³öÓÍÄ¤Ãæ»ý£¬´Ó¶øÇó³ö·Ö×ÓÖ±¾¶£®¸ù¾Ý´ËÔÀí·ÖÎöÎó²î£»¸ù¾ÝÓÍ·Ö×ÓÖ±¾¶¿ÉÒÔÇó³öÓÍ·Ö×ÓµÄÌå»ý£¬È»ºóÃ÷È·Á˰¢·üÙ¤µÂÂÞ³£ÊýµÄÎïÀíÒâÒå¼´¿ÉÕýÈ·½â´ð£®
½â´ð ½â£º£¨1£©Íù±ß³¤Îª30cm¡«40cmµÄdzÅÌÀïµ¹Èë2cmÉîµÄË®£¬È»ºó½«ðò×Ó·Û»òʯ¸à·Û¾ùÔÈÈöÔÚË®ÃæÉÏ
£¨2£©1µÎ¾Æ¾«ÈÜÒºÖд¿ÓÍËáµÄÌå»ýΪ£º$V¡ä=\frac{1}{100}¡Á\frac{1}{500}mL=2¡Á1{0}_{\;}^{-5}mL$
£¨3£©³¬¹ý°ë¸öµÄÕý·½ÐεÄ115¸ö£¬¹ÊÓÍÄ¤Ãæ»ýΪ£º$S=115¡Á2cm¡Á2cm=460c{m}_{\;}^{2}$
ÓÍËá·Ö×ÓµÄÖ±¾¶Îª£º$d=\frac{V¡ä}{S}=\frac{2¡Á1{0}_{\;}^{-5}¡Á1{0}_{\;}^{-6}}{460¡Á1{0}_{\;}^{-4}}m=4.3¡Á1{0}_{\;}^{-10}m$
£¨4£©¼ÆËãÓÍËá·Ö×ÓÖ±¾¶µÄ¹«Ê½ÊÇ$d=\frac{V}{S}$£¬VÊÇ´¿ÓÍËáµÄÌå»ý£¬SÊÇÓÍĤµÄÃæ»ý£®
A£®ÓÍËáδÍêȫɢ¿ª£¬SƫС£¬¹ÊµÃµ½µÄ·Ö×ÓÖ±¾¶d½«Æ«´ó£¬¹ÊAÕýÈ·£»
B£®¼ÆËãʱÀûÓõÄÊÇ´¿ÓÍËáµÄÌå»ý£¬Èç¹ûÓÍËáÈÜҺŨ¶ÈµÍÓÚʵ¼ÊÖµ£¬ÔòÓÍËáµÄʵ¼ÊÌå»ýƫС£¬ÔòÖ±¾¶½«Æ«Ð¡£¬¹ÊB´íÎó£»
C£®¼ÆËãÓÍÄ¤Ãæ»ýʱÉáÈ¥ÁËËùÓв»×ãÒ»¸ñµÄ·½¸ñ£¬S½«Æ«Ð¡£¬¹ÊµÃµ½µÄ·Ö×ÓÖ±¾¶½«Æ«´ó£¬¹ÊCÕýÈ·£»
D¡¢ÇóÿµÎÌå»ýʱ£¬lmLµÄÈÜÒºµÄµÎÊýÎó¶à¼ÇÁË10µÎ£¬ÓÉ${V}_{0}^{\;}=\frac{V}{n}$£¬¿ÉÖª£¬´¿ÓÍËáµÄÌå»ý½«Æ«Ð¡£¬Ôò¼ÆËãµÃµ½µÄ·Ö×ÓÖ±¾¶½«Æ«Ð¡£¬¹ÊD´íÎó£»
¹ÊÑ¡£ºAC
£¨5£©ÓÉÓÍ·Ö×ÓÖ±¾¶¿ÉÒÔÇó³öÓÍ·Ö×ÓµÄÌå»ý£¬Ö»ÒªÖªµÀÁËÓ͵ÄĦ¶ûÌå»ý£¬ÓÉĦ¶ûÌå»ýºÍÓÍ·Ö×ÓÌå»ýÖ®±È¿ÉÒÔÇó1Ħ¶ûÓÍËùº¬ÓеÄÓÍ·Ö×ÓÊýÄ¿£¬¼´¿ÉÒÔÇó³ö°¢·üÙ¤µÂÂÞ³£Êý£¬¹ÊÑ¡£ºB
¹Ê´ð°¸Îª£º£¨1£©ðò×Ó·Û»òʯ¸à·Û£»£¨2£©2¡Á10-5£» £¨3£©4.3¡Á10-10£»£¨4£©AC£» £¨5£©B
µãÆÀ ±¾Ì⿼²éÁËÓÍĤ·¨²â·Ö×ÓÖ±¾¶ÊÇʵÑé²½Öè¡¢Çó·Ö×ÓµÄÖ±¾¶£»ÒªÊìϤʵÑé²½ÖèÓëʵÑé×¢ÒâÊÂÏÇó·Ö×ÓÖ±¾¶Ê±£¬ÇóÓ͵ÄÌå»ýÊÇÒ×´íµã£¬Ò»¶¨Òª×¢ÒâËùÇóµÄÌå»ýÊÇ´¿Ó͵ÄÌå»ý£®½âÌâ½á¹û»¹Òª±£ÁôÓÐЧÊý×Ö
| A£® | $\frac{g{R}^{2}}{£¨R+h£©^{2}}$ | B£® | $\frac{GM}{£¨R+h£©^{2}}$ | C£® | $\frac{GMm}{£¨R+h£©^{2}}$ | D£® | $\frac{g{R}^{2}}{{h}^{2}}$ |
| A£® | $\frac{4}{9}g{t^2}$ | B£® | $\frac{2}{9}g{t^2}$ | C£® | $\frac{1}{6}g{t^2}$ | D£® | $\frac{5}{18}g{t^2}$ |
| A£® | Õýµç¡¢3E | B£® | ¸ºµç¡¢3E | C£® | Õýµç¡¢$\frac{E}{3}$ | D£® | ¸ºµç¡¢$\frac{E}{3}$ |
| A£® | ÎïÌåËùÊܵĺÏÁ¦µÄ×î´óֵΪ15N | B£® | ËĸöÁ¦ºÏÁ¦µÄ×îСֵΪ2N | ||
| C£® | ËĸöÁ¦ºÏÁ¦µÄ×îСֵΪ1N | D£® | ËĸöÁ¦µÄºÏÁ¦²»¿ÉÄÜÊÇ10N |