题目内容
圆:的圆心到直线的距离 .
(2015秋•上海校级月考)经过P(0,1)的直线l与两直线l1:x﹣3y+10=0和l2:2x+y﹣8=0分别交于P1、P2且满足,则直线l的方程为 .
(2015•红河州一模)如图,△RBC中,RB=BC=2,点A、D分别是RB、RC的中点,且2BD=RC,边AD折起到△PAD位置,使PA⊥AB,连结PB、PC.
(1)求证:BC⊥PB;
(2)求二面角A﹣CD﹣P的平面角的余弦值.
某校从参加高一年级期中考试的学生中随机抽出60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60),...,[90,100]后得到如图所示的部分频率分布直方图.观察图形的信息,回答下列问题:
(1)求分数在[70,80)内的频率,并补全这个频率分布直方图,统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;
(2)若从60名学生中随机抽取2人,抽到的学生成绩在[40,60)记0分,在[60,80)记1分,在[80,100]记2分,用表示抽取结束后的总记分,求的分布列和数学期望.
中,,的平分线交边于,且,,则的长为___________.
已知是两条不同的直线,是两个不同的平面( )
A.若且,则与不会垂直;
B.若是异面直线,且,,则与不会平行;
C.若是相交直线且不垂直,,则与不会垂直;
D.若是异面直线,且,,则与不会平行
已知以点C(t∈R,t≠0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点.
(Ⅰ)求证:△AOB的面积为定值;
(Ⅱ)设直线2x+y-4=0与圆C交于点M、N,若,求圆C的方程.
(Ⅲ)在(Ⅱ)的条件下,设P、Q分别是直线l:x+y+2=0和圆C上的动点,求的最小值。
若,是第三象限的角,则( )
A. B. C. D.
(2015秋•沈阳校级月考)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60],…,[80,90],[90,100]
(Ⅰ)求频率分布图中a的值;
(Ⅱ)估计该企业的职工对该部门评分不低于80的概率;
(Ⅲ)求出本次评分的众数、中位数、平均数.