题目内容
14.已知向量$\overrightarrow{a}$=(cos40°,sin40°),$\overrightarrow{b}$=(sin20°,cos20°),$\overrightarrow{u}$=$\sqrt{3}$$\overrightarrow{a}$+λ$\overrightarrow{b}$(其中λ∈R),则|$\overrightarrow{u}$|的最小值为( )| A. | $\frac{{\sqrt{6}}}{2}$ | B. | $\frac{3}{4}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\sqrt{3}$ |
分析 先求出$\overline{μ}$=($\sqrt{3}cos40°+λsin20°$,$\sqrt{3}sin40°+λcos20°$),从而|$\overrightarrow{μ}$|=$\sqrt{(\sqrt{3}cos40°+λsin20°)^{2}+(\sqrt{3}sin40°+λcos20°)^{2}}$=$\sqrt{{λ}^{2}+3λ+3}$,再利用配方法能求出当$λ=-\frac{3}{2}$时,|$\overrightarrow{u}$|取最小值$\frac{\sqrt{3}}{2}$.
解答 解:∵向量$\overrightarrow{a}$=(cos40°,sin40°),$\overrightarrow{b}$=(sin20°,cos20°),$\overrightarrow{u}$=$\sqrt{3}$$\overrightarrow{a}$+λ$\overrightarrow{b}$(其中λ∈R),
∴$\overline{μ}$=($\sqrt{3}cos40°$,$\sqrt{3}sin40°$)+(λsin20°,λcos20°)=($\sqrt{3}cos40°+λsin20°$,$\sqrt{3}sin40°+λcos20°$),
∴|$\overrightarrow{μ}$|=$\sqrt{(\sqrt{3}cos40°+λsin20°)^{2}+(\sqrt{3}sin40°+λcos20°)^{2}}$
=$\sqrt{3+{λ}^{2}+2\sqrt{3}λsin60°}$
=$\sqrt{{λ}^{2}+3λ+3}$
=$\sqrt{(λ+\frac{3}{2})^{2}+\frac{3}{4}}$,
∴当$λ=-\frac{3}{2}$时,|$\overrightarrow{u}$|取最小值$\frac{\sqrt{3}}{2}$.
故选:C.
点评 本题考查向量的模的最小值的求法,是中档题,解题时要认真审题,注意向量的坐标运算法则、三角函数性质、配方法的合理运用.
| A. | $\frac{1}{15}$ | B. | $\frac{2}{15}$ | C. | $\frac{1}{5}$ | D. | $\frac{4}{15}$ |
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 即不充分也不必要条件 |
| A. | 若点P∈α,P∈β且α∩β=l,则P∈l | |
| B. | 三点A,B,C能确定一个平面 | |
| C. | 若直线a∩b=A,则直线a与b能够确定一个平面 | |
| D. | 若点A∈l,B∈l,且A∈α,B∈α,则l?α |