题目内容

3.$f(x)=Asin(ωx+φ)(A>0,ω>0,-\frac{π}{2}<φ<\frac{π}{2})$的部分图象如图所示,则函数f(x)的解析式为(  )
A.$f(x)=2sin(2x-\frac{π}{6})$B.$f(x)=2sin(x+\frac{π}{6})$C.$f(x)=2sin(2x+\frac{π}{3})$D.$f(x)=2sin(2x+\frac{π}{6})$

分析 由题意,求出A、最小正周期T、ω和φ的值即可.

解答 解:由题意可知A=2,
最小正周期为T=4($\frac{5π}{12}$-$\frac{π}{6}$)=π,
∴ω=$\frac{2π}{T}$=2;
又当x=$\frac{π}{6}$时f(x)取得最大值2,
由五点法作图知,2=2sin(2x+φ),
即2×$\frac{π}{6}$+φ=$\frac{π}{2}$,
解得φ=$\frac{π}{6}$;
∴函数f(x)的解析式为f(x)=2sin(2x+$\frac{π}{6}$).
故选:D.

点评 本题考查了由y=Asin(ωx+φ)的部分图象确定解析式的应用问题,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网