题目内容
5.已知函数f(x)=$\left\{\begin{array}{l}{2x+1,x≤0}\\{f(x-3),x>0}\end{array}\right.$,则f(1)=-3,f(2015)=-1.分析 利用分段函数的性质求解.
解答 解:∵函数f(x)=$\left\{\begin{array}{l}{2x+1,x≤0}\\{f(x-3),x>0}\end{array}\right.$,
∴f(1)=f(-2)=2×(-2)+1=-3.
f(2015)=f(672×3-1)=f(-1)=2×(-1)+1=-1.
故答案为:-3,-1.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意分段函数的性质的合理运用.
练习册系列答案
相关题目
2.已知α是第二象限角,且tanα=-$\frac{1}{3}$,则sin2α=( )
| A. | -$\frac{3\sqrt{10}}{10}$ | B. | $\frac{3\sqrt{10}}{10}$ | C. | -$\frac{3}{5}$ | D. | $\frac{3}{5}$ |
14.已知直线l1:$\frac{x}{m-2}$-$\frac{4m}{m-2}$y+2=0,l2:m2x+$\frac{y}{m}$-9=0.若l1⊥l2,则m的值是( )
| A. | -$\frac{1}{2}$ | B. | -2 | C. | $\frac{1}{2}$ | D. | 2 |