题目内容

1.已知等比数列{an}的前n项和为Sn,2an+2an+2+5Sn=5Sn+1,且a1=q>1,数列{bn}满足$\frac{{b}_{n}}{{a}_{n}}$=|sin$\frac{(n+1)π}{2}$|.,若数列{bn}的前m项和为340,则m的值为8或9.

分析 由2an+2an+2+5Sn=5Sn+1,可得2an+2an+2=5an+1,2+2q2=5q,且a1=q>1,解得a1=q=2.可得bn=2n•|sin$\frac{(n+1)π}{2}$|,对n分类讨论即可得出.

解答 解:由2an+2an+2+5Sn=5Sn+1,∴2an+2an+2=5an+1,∴2+2q2=5q,且a1=q>1,
解得a1=q=2.
∴an=2n
∵数列{bn}满足$\frac{{b}_{n}}{{a}_{n}}$=|sin$\frac{(n+1)π}{2}$|.∴bn=2n•|sin$\frac{(n+1)π}{2}$|,
∴b2n-1=22n-1•|sin(nπ)|=0,b2n=22n$|sin\frac{(2n+1)π}{2}|$=22n
∵数列{bn}的前m项和为340,假设m=2n.
∴b2+b4+…+b2n=22+24+…+22n=340,
∴$\frac{4({4}^{n}-1)}{4-1}$=340,解得n=4.
∴m=8.
∵a9=0.
∴m=9时也满足条件.
∴m=8或9.
故答案为:8或9.

点评 本题考查了等比数列的通项公式与求和公式、分类讨论方法、分组求和方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网