题目内容

18.设函数f(x)=$\frac{(x+2)^{2}+sinx}{{x}^{2}+4}$的最大值为M,最小值为m,则M+m=2.

分析 化f(x)为1+$\frac{4x+sinx}{{x}^{2}+4}$,由g(x)=$\frac{4x+sinx}{{x}^{2}+4}$,定义域为R,判断g(x)的奇偶性,由图象性质可得g(x)的最值之和为0,进而得到所求和.

解答 解:函数f(x)=$\frac{(x+2)^{2}+sinx}{{x}^{2}+4}$
=$\frac{{x}^{2}+4+4x+sinx}{{x}^{2}+4}$=1+$\frac{4x+sinx}{{x}^{2}+4}$,
由g(x)=$\frac{4x+sinx}{{x}^{2}+4}$,定义域为R,
可得g(-x)+g(x)=$\frac{-4x-sinx}{{x}^{2}+4}$+$\frac{4x+sinx}{{x}^{2}+4}$=0,
可得g(x)为奇函数,
由奇函数的图象关于原点对称,
可得g(x)的最大值a与最小值b的和为0,
则M+m=a+1+b+1=(a+b)+2=2.
故答案为:2.

点评 本题考查函数的最值的求法,注意运用转化法,由奇函数的性质:最值之和为0,考查运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网