题目内容
设a=log20.7,b=40.9,c=80.48,d=0.5-1.5,则有( )
| A、a<b<c<d |
| B、a<c<d<b |
| C、b<a<c<d |
| D、b<d<a<c |
考点:对数值大小的比较
专题:函数的性质及应用
分析:根据对数函数的图象和性质可得a<0,但b,c,c均大于0,结合指数的运算性质,将三者都化为以2为底后,结合指数函数的单调性,可得答案.
解答:
解:∵a=log20.7∈(-∞,0),
b=40.9=21.8,
c=80.48=21.44,
d=0.5-1.5=21.5,
∵y=2x为增函数,且1.44<1.5<1.8,
故a<c<d<b,
故选:B
b=40.9=21.8,
c=80.48=21.44,
d=0.5-1.5=21.5,
∵y=2x为增函数,且1.44<1.5<1.8,
故a<c<d<b,
故选:B
点评:本题考查的知识点是数的大小比较,指数函数和对数函数的单调性,其中熟练掌握指数函数和对数函数的图象和性质是解答的关键.
练习册系列答案
相关题目
下列函数中,最小值为4的是( )
A、y=x+
| ||||||
B、y=sinx+
| ||||||
| C、y=ex+4e-x | ||||||
D、y=
|
方程x2+y2-2x+4y+6=0表示的曲线是( )
| A、圆 | B、点 | C、不存在 | D、无法确定 |
函数f(x)在定义域R内可导,若对x∈R,恒有f(1+x)=f(1-x),且当x∈(-∞,1)时,(x-1)f′(x)<0,设a=f(0),b=f(
),c=f(3),则( )
| 1 |
| 2 |
| A、b<c<a |
| B、c<a<b |
| C、c<b<a |
| D、a<b<c |
盒中有4个红球3个黄球,从中任取一个球,用X表示取出的黄球个数,那么DX等于( )
A、
| ||
B、
| ||
C、
| ||
D、
|
阅读如图的程序框图,若输出的S的值为30,则在判断框中应填入( )

| A、i>3? | B、i>4? |
| C、i>5? | D、i<4? |
在长方体ABCD-A1B1C1D1中,∠AB1B=45°,∠CB1C1=60°,则异面直线AB1与A1D所成角的余弦值为( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|