题目内容

已知函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,0<φ<
π
2
)的周期为π,且图象上有一个最低点为M(
3
,-3).
(1)求f(x)的解析式;
(2)求使f(x)<
3
2
成立的x的取值集合.
考点:由y=Asin(ωx+φ)的部分图象确定其解析式,正弦函数的图象
专题:计算题,三角函数的图像与性质
分析:(1)由题意知:A=3,ω=2,由3sin(2×
3
+φ)=-3,得φ+
3
=-
π
2
+2kπ,k∈Z,而0<φ<
π
2
,所以确定φ的值,故f(x)=3sin(2x+
π
6
).
(2)f(x)<
3
2
等价于3sin(2x+
π
6
)<
3
2
,即sin(2x+
π
6
)<
1
2
,可得2kπ-
6
<2x+
π
6
<2kπ+
π
6
(k∈Z),解得kπ-
3
<x<kπ(k∈Z).
解答: 解:(1)由题意知:A=3,ω=2,…(1分)
由3sin(2×
3
+φ)=-3,…(2分)
得φ+
3
=-
π
2
+2kπ,k∈Z,…(3分)
即φ=
-11π
6
+2kπ,k∈Z.…(4分)
而0<φ<
π
2
,所以k=1,φ=
π
6
.…(5分)
故f(x)=3sin(2x+
π
6
).…(6分)
(2)f(x)<
3
2
等价于3sin(2x+
π
6
)<
3
2

即sin(2x+
π
6
)<
1
2
,…(7分)
于是2kπ-
6
<2x+
π
6
<2kπ+
π
6
(k∈Z),…(9分)
解得kπ-
3
<x<kπ(k∈Z),…(11分)
故使f(x)<
3
2
成立的x的取值集合为{x|kπ-
3
<x<kπ,k∈Z}.…(12分)
点评:本题主要考察了正弦函数的图象和性质,由y=Asin(ωx+φ)的部分图象确定其解析式,属于基本知识的考查.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网