题目内容

14.已知函数f(x)=$\left\{{\begin{array}{l}{sin\frac{5πx}{2},x≤0}\\{\frac{1}{6}-{{log}_3}x,x>0}\end{array}}$,则$f[{f({3\sqrt{3}})}]$=$\frac{\sqrt{3}}{2}$.

分析 利用分段函数逐步求解函数值即可.

解答 解:函数f(x)=$\left\{{\begin{array}{l}{sin\frac{5πx}{2},x≤0}\\{\frac{1}{6}-{{log}_3}x,x>0}\end{array}}$,则$f[{f({3\sqrt{3}})}]$=f[$\frac{1}{6}$$-lo{g}_{3}3\sqrt{3}$]=f($-\frac{4}{3}$)=sin($\frac{5π}{2}×(-\frac{4}{3})$)=sin$\frac{2π}{3}$=$\frac{\sqrt{3}}{2}$.
故答案为:$\frac{{\sqrt{3}}}{2}$.

点评 本题考查分段函数的应用,函数值的求法,对数运算法则以及三角函数化简求值,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网