题目内容
7.已知全集U={x∈N|x≤4},A={0,1,3},B={1,3,4},则∁U(A∩B)=( )| A. | {2} | B. | {4} | C. | {2,4} | D. | {0,2,4} |
分析 由全集U以及A与B的交集,再求出补集即可.
解答 解:全集U={x∈N|x≤4}={0,1,2,3,4},
∵A={0,1,3},B={1,3,4},
∴A∩B={1,3},
∴∁U(A∩B)={0,2,4},
故选:D.
点评 此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.
练习册系列答案
相关题目
18.某学校有高一、高二、高三三个年级,已知高一、高二、高三的学生数之比为2:3;5,现从该学校中抽取一个容量为100的样本,从高一学生中用简单随机抽样抽取样本时,学生甲被抽到的概率为$\frac{1}{4}$,则该学校学生的总数为( )
| A. | 200 | B. | 400 | C. | 500 | D. | 1000 |
15.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点与抛物线y2=4$\sqrt{5}$x的焦点重合,点P(2,1)在双曲线的渐近线上,则ab的值为( )
| A. | 2 | B. | $\sqrt{2}$ | C. | 8 | D. | $\frac{10}{3}$ |
12.已知函数f(x)=loga(4-ax)在[0,2]上是单调递减函数,则实数a的取值范围为( )
| A. | (0,1) | B. | (1,+∞) | C. | (1,2) | D. | (2,+∞) |
5.在△ABC中,AD为BC边上的高,已知∠BAC=$\frac{3π}{4}$,AC=1,AD=$\frac{BC}{6}$,则AB+$\frac{1}{AB}$的值为( )
| A. | 2 | B. | 2$\sqrt{2}$ | C. | 3 | D. | 3$\sqrt{2}$ |