题目内容
已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则tanθ=( )
| A、-2 | ||
| B、2 | ||
C、-
| ||
D、
|
考点:任意角的三角函数的定义
专题:三角函数的求值
分析:根据直线的斜率等于倾斜角的正切值,由已知直线的斜率得到tanθ的值.
解答:
解:角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,
可知:tanθ=2,
故选:B.
可知:tanθ=2,
故选:B.
点评:此题考查学生掌握直线的斜率与倾斜角的关系,是一道基础题.
练习册系列答案
相关题目
PT切⊙O于T,割线PAB经过O点交⊙O于A、B,若PT=4,PA=2,则cos∠BPT=( )
A、
| ||
B、
| ||
C、
| ||
D、
|
西华三高高二文科班数学兴趣小组为了了解用电量y(千瓦时)与气温x(℃)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:
由表中数据得线性回归方程
=bx+a中b≈-2,预测当气温为-4℃时,用电量约为( )
| 气温x(℃) | 18 | 13 | 10 | -1 |
| 用电量y(千瓦时) | 24 | 34 | 38 | 64 |
| y |
| A、58千瓦时 |
| B、66千瓦时 |
| C、68千瓦时 |
| D、70千瓦时 |
已知直线y=x+b与平面区域C:
,的边界交于A,B两点,若|AB|≥2
,则b的取值范围是( )
|
| 2 |
| A、(-2,2) |
| B、[-2,2) |
| C、(-2,2] |
| D、[-2,2] |
已知椭圆的中心在原点,焦点在x轴上,长轴长为4,过焦点且垂直于长轴的弦长为3,则椭圆的方程是( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|