如图,在菱形ABCD中,∠B=60°,AB=1,延长AD到点E,使DE=AD,延长CD到点F,使DF=CD,连接AC、CE、EF、AF.
(1)求证:四边形ACEF是矩形;
(2)求四边形ACEF的周长.
如图所示,在宽为16m,长为20m的矩形耕地上,修筑同样宽的两条道路(互相垂直),把耕地分成大小不等的四块试验田,要使试验田的面积为285m2,道路应为多宽?
如图,已知在△ABC中,AB=AC,AD⊥BC于D,且AD=BC=4,若将三角形沿AD剪开成为两个三角形,在平面上把这两个三角形拼成一个四边形,你能拼出所有的不同形状的四边形吗?画出所拼四边形的示意图(标出图中的直角),并分别写出所拼四边形的对角线的长.(只需写出结果即可)
如图,正方形ABCD中,P是对角线BD上一点,连接AP、,BF⊥AP于H,CP、BH延长线分别交AD边于点E、F。
(1)求证:∠DAP=∠DCE
(2)求证:AE=FD
(3)猜想∠APE与∠FBD的数量关系,并说明理由.
如图,在平面直角坐标系xOy中,一次函数y=x+1与x、y 轴分别交于点A、B,在直线 AB上截取BB1=AB,过点B1分别作x、y 轴的垂线,垂足分别为点A1、C1,得到矩形OA1B1C1;在直线 AB上截取B1B2= BB1,过点B2分别作x、y 轴的垂线,垂足分别为点A2 、C2,得到矩形OA2B2C2;在直线AB上截取B2B3= B1B2,过点B3分别作x、y 轴的垂线,垂足分别为点A3、C3,得到矩形OA3B3C3;……;
则点B1的坐标是 ;第3个矩形OA3B3C3的面积是 ;
第n个矩形OAnBnCn的面积是 (用含n的式子表示,n是正整数).
已知方程x2+(3-)x-3=0 (m>0) 的两个根为x1、x2,且x1<x2.
(1)求x2的值;
(2)求代数式mx12+x12+(3-)x1+6x1+9的值.
已知:如图,在矩形ABCD中,AB=8,BC=4.在AD上取一点E,AE=1,点F是AB边上的一个动点,以EF为一边作菱形EFMN,使点N落在CD边上,点M落在矩形ABCD内或其边上.若AF=x,△BFM的面积为S.
(1)当四边形EFMN是正方形时,求x的值;
(2)当四边形EFMN是菱形时,求S与x的函数关系式;
(3)当x= 时,△BFM的面积S最大;当x= 时,△BFM的面积S最小;
(4)在△BFM的面积S由最大变为最小的过程中,请直接写出点M运动的路线长: 。
下列说法正确的是( )
A. 零是正数不是负数
B. 零既不是正数也不是负数
C. 零既是正数也是负数
D. 不是正数的数一定是负数,不是负数的数一定是正数
在数,,,中任取三个数相乘,其中积最小的是( )
A. -30 B. 24 C. -40 D. 60
年第二季度,遵义市全市生产总值约为亿元,将数亿用科学记数法表示为( )
A. 532× B. 5.32× C. 5.32× D. 5.32×