阅读填空,并完成问题:“绝对值”一节学习后,数学老师对同学们的学习进行了拓展.数学老师向同学们提出了这样的问题:“在数轴上,一个数的绝对值就是表示这个数的点到原点的距离.那么,如果用P(a)表示数轴上的点P表示有理数a,Q(b)表示数轴上的点Q表示有理数b,那么点P与点Q的距离是多少?”

(1)聪明的小明经过思考回答说:这个问题应该有两种情况.一种是点P和点Q在原点的两侧,此时点P与点Q的距离是a和b的绝对值的和,即∣a∣+∣b∣.例如:点A(-3)与点B(5)的距离为∣-3∣+∣-5∣=

另一种是点P和点Q在原点的同侧,此时点P与点Q的距离的a和b中,较大的绝对值减去较小的绝对值,即∣a∣-∣b∣或∣b∣-∣a∣.例如:点A(-3)与点B(-5)的距离为∣-5∣-∣-3∣=

你认为小明的说法有道理吗?如果没有道理,请你指出错误之处;如果有道理,请你模仿求出数轴上点M()与N()之间和点C(-2)与D(-7)之间的距离.

(2)小颖在听了小明的方法后,提出了不同的方法,小颖说:我们可以不考虑点P和点Q所在的位置,无论点P与点Q的位置如何,它们之间的距离就是数a与b的差的绝对值,即∣a-b∣.例如:点A(-3)与点B(5)的距离就是∣-3-5∣= ;点A(-3)与点B(-5)的距离就是∣(-3)-(-5)∣= ;你认为小颖的说法有道理吗?如果没有道理,请你指出错误之处;如果有道理,请你模仿求出数轴上点M()与N()之间和点C(-1.5)与D(-3.5)之间的距离.

 0  332197  332205  332211  332215  332221  332223  332227  332233  332235  332241  332247  332251  332253  332257  332263  332265  332271  332275  332277  332281  332283  332287  332289  332291  332292  332293  332295  332296  332297  332299  332301  332305  332307  332311  332313  332317  332323  332325  332331  332335  332337  332341  332347  332353  332355  332361  332365  332367  332373  332377  332383  332391  366461 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网