网瘾低龄化问题已经引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,绘制出以下两幅统计图.
请根据图中的信息,回答下列问题:
(1)这次抽样调查中共调查了 人;
(2)请补全条形统计图;
(3)扇形统计图中18﹣23岁部分的圆心角的度数是 ;
(4)据报道,目前我国12﹣35岁网瘾人数约为2000万,请估计其中12﹣23岁的人数
如图,已知AB是⊙O的直径,CD与⊙O相切于C,BE∥CO.
(1)求证:BC是∠ABE的平分线;
(2)若DC=8,⊙O的半径OA=6,求CE的长.
为促进我市经济的快速发展,加快道路建设,某高速公路建设工程中需修隧道AB,如图,在山外一点C测得BC距离为200m,∠CAB=54°,∠CBA=30°,求隧道AB的长.(参考数据:sin54°≈0.81,cos54°≈0.59,tan54°≈1.38,≈1.73,精确到个位)
如图所示,一次函数y=kx+b与反比例函数y=的图象交于A(2,4),B(﹣4,n)两点.
(1)分别求出一次函数与反比例函数的表达式;
(2)过点B作BC⊥x轴,垂足为点C,连接AC,求△ACB的面积.
某校运动会需购买A、B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.
(1)求A、B两种奖品的单价各是多少元?
(2)学校计划购买A、B两种奖品共100件,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.请您确定当购买A种奖品多少件时,费用W的值最少.
如图1,在Rt△ABC中,∠BAC=90°,AB=AC,D,E两点分别在AB,AC上,且DE∥BC,将△ADE绕点A顺时针旋转,记旋转角为α.
(1)问题发现 当a=0°时,线段BD,CE的数量关系是______;
(2)拓展探究 当0°≤a<360°时,(1)中的结论有无变化?请仅就图2的情形给出证明;
(3)问题解决 设DE=,BC=3,0°≤α<360°,△ADE旋转至A,B,E三点共线时,直接写出线段BE的长.
如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线1与抛物线交于A、C两点,其中C点的横坐标为2.
(1)求A、B两点的坐标及直线AC的函数表达式;
(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,设P点的横坐标为m.
①求线段PE长度的最大值;
②点P将线段AC分割成长、短两条线段PA、PC,如果较长线段与AC之比等于,则称P为线段AC的“黄金分割点”,请直接写出使得P为线段AC黄金分割点的m的值.
下列美丽的图案,既是轴对称图形又是中心对称图形的个数是
A. 1个 B. 2个 C. 3个 D. 4个
如图,△OAB绕点O逆时针旋转80°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数是( )
A. 30° B. 40° C. 50° D. 60°
将抛物线y=x2向右平移1个单位长度,再向上平移2个单位长度所得的抛物线解析式为( )
A. y=(x﹣1)2+2 B. y=(x+1)2+2 C. y=(x﹣1)2﹣2 D. y=(x+1)2﹣2