如图,是二次函数 的图象的一部分,给出下列命题:①;②;③的两根分别为和;④.其中正确的命题是________.(只要求填写正确命题的序号)
某校为绿化校园,在一块长为米,宽为米的长方形空地上建造一个长方形花圃,如图设计这个花圃的一边靠墙(墙长大于米),并在不靠墙的三边留出一条宽相等的小路,设小路的宽为米,花圃面积为为平方米,求关于的函数解析式,并写出函数的定义域.
某企业是一家专门生产季节性产品的企业,经过调研预测,它一年中获得的利润y(万元)和 月份n之间满足函数关系式y=﹣n2+14n﹣24.
(1)若利润为21万元,求n的值.
(2)哪一个月能够获得最大利润,最大利润是多少?
(3)当产品无利润时,企业会自动停产,企业停产是哪几个月份?
已知二次函数的图象与坐标轴交点的坐标分别为,,.
求此函数的解析式;
求抛物线的开口方向、对称轴及顶点坐标;
根据图象直接写出时的取值范围.
如图,已知二次函数的图象过点和点,对称轴为直线.
求该二次函数的关系式和顶点坐标;
结合图象,解答下列问题:
①当时,求函数的取值范围.
②当时,求的取值范围.
在平面直角坐标系中,平行四边形如图放置,点、的坐标分别是、,将此平行四边形绕点顺时针旋转,得到平行四边形.
如抛物线经过点、、,求此抛物线的解析式;
在情况下,点是第一象限内抛物线上的一动点,问:当点在何处时,的面积最大?最大面积是多少?并求出此时的坐标;
在的情况下,若为抛物线上一动点,为轴上的一动点,点坐标为,当、、、构成以作为一边的平行四边形时,求点的坐标.
如图,在△ABC中,以BC为直径的⊙O交AC于点E,过点E作AB的垂线交AB于点F,交CB的延长线于点G,且∠ABG=2∠C.
(1)求证:EG是⊙O的切线;
(2)若tanC=,AC=8,求⊙O的半径.
如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于A、B两点,交y轴于点C,直线BC的表达式为y=﹣x+3.
(1)求抛物线的表达式;
(2)在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;
(3)在x轴上是否存在一点Q,使得以A、C、Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.
若把的各边扩大到原来的倍后,得,则下列结论错误的是( )
A.
B. 与的相似比为
C. 与的对应角相等
D. 与的相似比为
在中,是的中点,,分别是的三等分点,,分别交于,两点,则等于( )
A. 3:2:1 B. 4:2:1 C. 5:2:1 D. 5:3:2