重庆市的重大惠民工程--公租房建设已陆续竣工,计划10年内解决低收入人群的住房问题,前6年,每年竣工投入使用的公租房面积
单位:百万平方米
,与时间x的关系是
单位:年,
且x为整数
;后4年,每年竣工投入使用的公租房面积
单位:百万平方米
,与时间x的关系是
单位:年,
且x为整数
假设每年的公租房全部出租完
另外,随着物价上涨等因素的影响,每年的租金也随之上调,预计,第x年投入使用的公租房的租金
单位:元
与时间
单位:年,
且x为整数
满足一次函数关系如下表:
| 50 | 52 | 54 | 56 | 58 |
|
| 1 | 2 | 3 | 4 | 5 |
|
求出z与x的函数关系式;
求政府在第几年投入的公租房收取的租金最多,最多为多少百万元;
若第6年竣工投入使用的公租房可解决20万人的住房问题,政府计划在第10年投入的公租房总面积不变的情况下,要让人均住房面积比第6年人均住房面积提高
,这样可解决住房的人数将比第6年减少
,求a的值.
参考数据: ![]()
中国经济的快速发展让众多国家感受到了威胁,随着钓鱼岛事件、南海危机、萨德入韩等一系列事件的发生,国家安全一再受到威胁,所谓“国家兴亡,匹夫有责”,某校积极开展国防知识教育,九年级甲、乙两班分别选5名同学参加“国防知识”比赛,其预赛成绩如图所示:
![]()
根据上图填写下表:
平均数 | 中位数 | 众数 | 方差 | |
甲班 | | | ______ | ______ |
乙班 | | ______ | 10 | |
根据上表数据,分别从平均数、中位数、众数、方差的角度分析哪个班的成绩较好.
某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.
不妨设该种品牌玩具的销售单价为x元
,请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:
销售单价 | x |
销售量 | ______ |
销售玩具获得利润 | ______ |
在
问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.
在
问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?