如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙O于F,连接DF、AF,求△ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OE∥AB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OE∥AB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD,

∵OE∥AB,

∴∠COE=∠CAD,∠EOD=∠ODA,

∵OA=OD,

∴∠OAD=∠ODA,

∴∠COE=∠DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

∴ED⊥OD,

∴ED是的切线;

(2)连接CD,交OE于M,

在Rt△ODE中,

∵OD=32,DE=2,

∵OE∥AB,

∴△COE∽△CAB,

∴AB=5,

∵AC是直径,

∵EF∥AB,

∴S△ADF=S梯形ABEF?S梯形DBEF

∴△ADF的面积为

【题型】解答题
【结束】
23

某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.

(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?

(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?

(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?

某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.

(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?

(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?

(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?

【答案】(1)x+10元;(2)每个定价为70元,应进货200个.(3)每个定价为65元时得最大利润,可获得的最大利润是6250元.

【解析】试题分析:(1)根据利润=销售价-进价列关系式,(2)总利润=每个的利润×销售量,销售量为400-10x,列方程求解,根据题意取舍,(3)利用函数的性质求最值.

试题解析:由题意得:(1)50+x-40=x+10(元),

(2)设每个定价增加x元,

列出方程为:(x+10)(400-10x)=6000,解得:x1=10,x2=20,要使进货量较少,则每个定价为70元,应进货200个,

(3)设每个定价增加x元,获得利润为y元,

y=(x+10)(400-10x)=-10x2+300x+4000=-10(x-15)2+6250,当x=15时,y有最大值为6250,所以每个定价为65元时得最大利润,可获得的最大利润是6250元.

【题型】解答题
【结束】
24

猜想与证明:

如图1,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.

拓展与延伸:

(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为   

(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.

猜想与证明:

如图1,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.

拓展与延伸:

(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为   

(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.

【答案】猜想:DM=ME,证明见解析;(2)成立,证明见解析.

【解析】

试题分析:延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(1)、延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(2)、连接AE,根据正方形的性质得出∠FCE=45°,∠FCA=45°,根据RT△ADF中AM=MF得出DM=AM=MF,根据RT△AEF中AM=MF得出AM=MF=ME,从而说明DM=ME.

试题解析:如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,

∴∠EFM=∠HAM,

又∵∠FME=∠AMH,FM=AM,

在△FME和△AMH中,

∴△FME≌△AMH(ASA)

∴HM=EM,

在RT△HDE中,HM=DE,

∴DM=HM=ME,

∴DM=ME.

(1)、如图1,延长EM交AD于点H,

∵四边形ABCD和CEFG是矩形,

∴AD∥EF,

∴∠EFM=∠HAM,

又∵∠FME=∠AMH,FM=AM,

在△FME和△AMH中,

∴△FME≌△AMH(ASA)

∴HM=EM,

在RT△HDE中,HM=EM

∴DM=HM=ME,

∴DM=ME,

(2)、如图2,连接AE,

∵四边形ABCD和ECGF是正方形,

∴∠FCE=45°,∠FCA=45°,

∴AE和EC在同一条直线上,

在RT△ADF中,AM=MF,

∴DM=AM=MF,

在RT△AEF中,AM=MF,

∴AM=MF=ME,

∴DM=ME.

考点:(1)、三角形全等的性质;(2)、矩形的性质.

【题型】解答题
【结束】
25

已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

 0  326050  326058  326064  326068  326074  326076  326080  326086  326088  326094  326100  326104  326106  326110  326116  326118  326124  326128  326130  326134  326136  326140  326142  326144  326145  326146  326148  326149  326150  326152  326154  326158  326160  326164  326166  326170  326176  326178  326184  326188  326190  326194  326200  326206  326208  326214  326218  326220  326226  326230  326236  326244  366461 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网