实验数据显示,一般成人喝半斤低度白酒后,1.5时内其血液中酒精含量y(毫克/百毫升)与时间x (时)的关系可近似地用二次函数y=-200x2+400x刻画;1.5时后(包括1.5时)y与x可近似地用反比例函数(k>0)刻画(如图所示).

(1)根据上述数学模型计算:喝酒后几时血液中的酒精含量达到最大值?最大值为多少

(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:30在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.


 

【答案】(1)喝酒后1时血液中的酒精含量达到最大值,最大值为200毫克/百毫升;(2)第二天早上7:45以后才可以驾驶,7:00时不能驾车去上班.

【解析】试题分析:首先将二次函数配方成顶点式,得出最大值;将x=5和y=45代入反比例函数解析式求出k的值;首先求出晚上20:00至第二天早上7:00一共有11小时,讲x=11代入反比例函数解析式求出y的值与20进行比较大小,得出答案.

试题解析:(1)①y=﹣200x2+400x=﹣200(x﹣1)2+200,

∴喝酒后1时血液中的酒精含量达到最大值,最大值为200(毫克/百毫升);

②∵当x=5时,y=45,y=(k>0), ∴k=xy=45×5=225;

(2)不能驾车上班;

理由:∵晚上20:00到第二天早上7:00,一共有11小时,

∴将x=11代入y=,则y=>20, ∴第二天早上7:00不能驾车去上班.

考点:二次函数、反比例函数的实际应用.

【题型】解答题
【结束】
24

综合与探究:

如图,抛物线y=x2﹣x﹣4与x轴交与A,B两点(点B在点A的右侧),与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.

(1)求点A,B,C的坐标.

(2)当点P在线段OB上运动时,直线l分别交BD,BC于点M,N.试探究m为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由.

(3)当点P在线段EB上运动时,是否存在点Q,使△BDQ为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.

 0  325880  325888  325894  325898  325904  325906  325910  325916  325918  325924  325930  325934  325936  325940  325946  325948  325954  325958  325960  325964  325966  325970  325972  325974  325975  325976  325978  325979  325980  325982  325984  325988  325990  325994  325996  326000  326006  326008  326014  326018  326020  326024  326030  326036  326038  326044  326048  326050  326056  326060  326066  326074  366461 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网